Cryptographic Primitives
Implemented Efficiently,
Correctly and Securely

Nik Swamy, OPLSS 2021

Thanks to Jonathan Protzenko and Chris Hawblitzel
for these slides. Errors are mine

Crypto code is hard to get right

But is critical for system security

Many bugs in Curve25519 implementations

(C and assembly)

agl / curve25519-donna

Ed25519 amd64 bug

[0] gistfilel.md

(® Watch

<> Code Issues 2 Pull requests 7 Projects 0 Wiki Ip~isbes

Correct bounds in 32-bit code.

The 32-bit code was illustrative of the tricks used in the original
curve25519 paper rather than rigorous. However, it has proven quite
popular.

This change fixes an issue that Robert Ransom found where outputs between
27255-19 and 27255-1 weren't correctly reduced in fcontract. This
appears to leak a small fraction of a bit of security of private keys.

Additionally, the code has been cleaned up to reflect the real-world
needs. The refl® code also exists for 32-bit, generic C but is somewhat
slower and objections around the lack of ghasm availibility have been
raised.

pmaser 013 CUrve25519-donna

. agl committed on Jun 9, 2014 1 parent

sv pack25519(u8 xo
{

int i,j,b;

gf m,t;

FOR(i,16) t[il=n

car25519(t);

car25519(t);
car25519(t);

FOR(j,2) {
m[@]=t[@]-Oxff
for(i=1;i<15;1i

m[i]l=t[i]-0x
m[i-1]&=0xff
¥
m[15]=t[15]-@x
b=(m[15]>>16)&
m[15]&=0xffff;
sel25519(t,m,1-b);

}

FOR(1i,16) {
o[2xi]=t[i]&@xfT;
o[2xi+1]=t[i]>>8;

}

}

While visiting 30c3, | attended the You-broke-the-Internet workshop on NaCl. N a C | (a S I I I)

One thing mentioned in the talk was that auditing crypto code is a lot of work, and that this is one of the reasons why
Ed25519 isn't included in NaCl yet (they promised a version including it for 2014). The speakers mentioned a bug in the
amd64 assembly implementation of Ed25519 as an example of a bug that can only be found by auditing, not by
randomized tests. This bug is caused by a carry being added in the wrong place, but since that carry is usually zero, the
bug is hard to fint (occurs with probability 2*{-60} or so).

The TweetNaCl paper briefly mentions this bug as well:

Partial audits have revealed a bug in this software (r1 += @ + carry shouldbe r2 += @ + carry in
amd64-64-24k) that would not be caught by random tests; this illustrates the importance of audits.

Searching for this string in the SUPERCOP source code turns up four matches:

crypto_scalarmult\curve25519\amd64-64\fe25519 mul.s
crypto_scalarmult\curve25519\amd64-64\fe25519_square.s
crypto_sign\ed25519\amd64-64-24k\fe25519_mul.s
crypto_sign\ed25519\amd64-64-24k\fe25519_square.s

So it apprears like the amd64-64 implementation of both Curve25519 and Ed25519 is affected.

It seems difficult to exploit this when used for key generation or signing since the attacker cannot influence the data. Key-
exchange and signature verification might be a problem.

TweetNaCl

This bug is triggered when the last limb n[15] of the input argument n of
this function is greater or equal than @xffff . In these cases the result of
the scalar multiplication is not reduced as expected resulting in a wrong
packed value. This code can be fixed simply by replacing m[15]&=0xffff;

by m[14]&=0xffff; .

Raw

3 Bugs in OpenSSL implementation
of Poly1305

[[openssl-dev] [openssl.org #4439] poly1305-x86.pl
OpenSSL Security Advisory [18 Nov 2016] produces incorrect output

“These produce wrong results. The first example does so only on 32 bit,
the other three also on 64 bit.”

“I believe this affects both the SSE2 and AVX2 code. It does seem to be
dependent on this input pattern.”

“I'm probably going to write something to generate random inputs and stress
all your other poly1305 code paths against a reference implementation.”

recommend doing the same in your own test harness, to make sure there 4
Iar‘en't others of these bugs lurking around.

Implementation bug in AES-GCM

The fragility of AES-GCM authentication algorithm

Shay Gueron'?, Vlad Krasnov”

! Department of Mathematics, University of Haifa, Israel
? Intel Corporation, Israel Development Center, Haifa, Israel

March 15, 2013

Abstract. A new implementation of the GHASH function has been recently
committed to a Git version of OpenSSL, to speed up AES-GCM. We identified
a bug in that implementation, and made sure it was quickly fixed before
trickling into an official OpenSSL trunk. Here, we use this (already fixed) bug

AES-GCM

Evaluate polynomials in this field to get an authentication code! (see also:
Poly1305)

GHASH (AES-GCM):

- p =218 (g=2,n=128)
- P=xMP +x"+xt+x+1

“the math”

Distilling the math for implementors

GeM 24 Decryption

24 Decryption

The authenticated dec
the hash step and enc

GCM

The highest term of f
to add the lowest tern
coefficients and addin
operations, this can be

if X,ur = Othen
The tag 7" that is comy l) « rightshift(X
the ciphertext C. If thi else oM
' Y« rightshift(X

Otherwise, the special 5
end if

which is 16 by

where R is the elemen dependent an(
all zeros. conserve mem
total of 8,192b

25 Multiplication

The multiplication op
specification. This def
in GCM. Section 3 pro

In order to multiply tv
use the method descril
and ¥ as inputs and re

With a small i
considerably, ¢

tion 4 describes some Ze0Ve—X an arbitrary el
fori = 0to 127 do
Each element is a vec if Y, = 1 then
bit is X, and the rig| Z—2ZaV
R = 11100001 [j0**
R 01[0'*, a end i This equation
argument one bit to t| Ve—V.P 7
1< i< 127and Wy end for i
s fori = 15to
feum.e z—2
Ze—Z-F
3 The Field GF In this algorithm, V' rui ind or
to the powers of a, mo Z—Za(x
defined in terms of fiel retum Z
A finite field is defin
the h.mf*nly,\-l\rmc pre Note that i loc
associativity, and dist 4 Implementati power of P*

element. Ina polynom arbitrary elem
product as

Implementing GCM is

of the underlying bloc!

provide an overview o

tion of the multiplicati The expressior

element z to th
be computed 1
using a table, a
products, so th
be combined.

The number of block «
equal to [p/128] + 1
tional block cipher iny

The table M, 1
112 bits equal
Itis not key-di
into four-bit el

The performai
implementatio

GCM

GCM

4.1 Software GCM

41

Software

4.1 Software

GCM 42 Hardware

Algorithm 3 Computes the table Mg given an element H € GF(2'*)
[}

P

M (0] — 0"
retun M

4.2 Hardware

I this section, we outline a pipelined hardware design, which is illustrated in Figure 3. The trape-
z0ids at the top and bottom denote inputs and outputs, respectively. The rhomboids denote the
points at which data paths are switched. There are three inputs: data that is authenticated-only
(AAD), the IV, and the plaintext. The IV is fed into the increment function, which then outputs
successive counter values that are fed into the block cipher pipeline, shown as E in the fig-
ure. The first encrypted counter is sent to encrypt the GHASH output (path 3), then the output
of that function is switched so that the other encrypted counters are exored with the plaintext
to form the ciphertext (path 2). The authenticated-only data is fed into the GHASH function
(path 1), then the input of that function is switched to the ciphertext (path 2). After all of the
data input to GHASH has been processed, the output of that function is exored with the fist es
crypted counter, producing the authentication tag. In this design, the tag-generating pipeline and
ciphertext- g pipelines are independent, except for the tag-encryption step. These two
pipelines can be made completely independent by adding another AES engine dedicated to the
encryption of the GHASH output

Binary Galois field multiplication is especially suitable for hardware implementations. Many im-
plementation strategies are discussed in the literature. Parr [11] summarizes the efficiency of var-
ious finite field multiplication methods for GF(29) as follows:

GCM

Figure 3: A hardware implementation of G

circuit.

42 Hardware

e /

2
-

i ciphertext ;

he algorithm

$code.= £

Writing the actual code

$ivp), $counter
$const

$key),$in0
$end@
$Xip), $X1i

$const),$Ii
$key) , $key
$Xip
$key

$Ii,$Xi, $X1i

A long way from the math

$end0
$in0, $end0O

$end0

$end0O

$inp),$Z3
$inp),$in0d
$inp), $20
$inp,$len), $end0@
$inp), $Z1
$len
$ret, $ret
$inp),$Z2
$Ii,%$Z3,%$Z3
$inp), $T2
$Ii,$20,%2Z0
$inp), $Hkey
$1i,%$71,%71
$Z0
$I1i,$Z22,%$Z2
$Z1
$Ii,$T2,%$T2

“the reality” e

$T2
$Hkey

$inout® $out
$inoutl $out

GF(2128) —

GF2)[X]/(x™® +x" +x* +x+ 1)

refines

Algorithm 1 Multiplication in G F(2'%%),
Z € GF(2'*%).

Z— 0V +—X
for: = 0 to 127 do
if ¥, = 1 then
Z—ZaV
end if
if V127 = 0 then
V « rightshift(V)
else
V « rightshift(V) & R
end if
end for
return £

refines

$ivp),$T1

$ivp),$counter

$cons
$key), $in@
$end0
$Xip), $Xi

$const),$Ii
$key) , $key
$Xip), $Xip
$key), $rounds
$Ii,$X1, $X1i

Ol ® @ [NON) | Hacl.Impl.Gf128.Generic.fst

procedure Clmul poly4 mul_add:

— ; € {:quick} #i:.fleldiipec

Specification B nodifies {9 Cl s

el rl] - :
z text: lbuffer uintg len -
/“ . ” xmml; : 8
(“the mathematical truth”) requi™Li X Stack unit
(requires (A h » live h ctx A live h text A s == F33))

pclmulqc e
degree (: (ensures (A hg _ hy; » modifiesj ctx hg hjy))

proof i;g{eii' =ze o < | aesgcm-x86_64-linux.S

xmm2 == pclmulqdq $17, %xmm2, S%xmm5
ensures f l movdqu S%xmm5, S%xmm2
C degree(’ movdqu %xmml, %xmm5
Pseudo_code movdqu %xmm3, %xmml

mov $0, %rl2
/“”: 0 0 ” : insrd $0, %rl2d, %xmml
(“implementation blueprint”) Dhutd 414, xxmmi, wxmnl
‘ pxor %xmml, %xmm2
movdqu %xmm4, %xmml
mov $0, %rl2
| pinsrd $0, %rl2d, %xmml
proof Procis 1= diy pshufd $14, Sxmml, Sxmml
: pxor S%xmml, %xmm2

movdqu Sxmm3, Sxmml
mov $0, %rl2

* i , % , %X
V I VaIe/F* Low emml'_;dd:i ; ::ESEE :;giz‘g}ciﬂl, %mél
' . . _a1v_m mov , %r

aie (“assembly-like”) (“C-like”)

emma_quad3: insrd $3, %rl2d, %xmm4
emma_quad3: d - 381k aesgcm-x86_64-linux.S unix | 3188: 0

Mnv128 (xmm5

Vla Vale fadd;acq bg);

) // xmm3 := | r. — cuh nre Oul 2ul
printer eclmulqdg(x [¢! Hacl_Gf128_PreComp.c

#Mov128 (xmm3 static void Hacl Impl Gf128 FieldPreComp fmul pre(uint64 t *x, uint64 t *pre)

A bI C d h f xmmd := ; uint64_t *tab = pre + (uint32_t)8U;
uint64 t tmp[2U] = { OU };
Ssem y ('asm) CO e ('C’ *) z\{;ﬁ?éézr{lil for (uint32 t i = (uint32 t)OU; i < (uint32 t)64U; i = i + (uint32 t)1U)

Mov128 (xmm4 uint64 t m = (uint64_t)8U - (x[1U] >> ((uint32_t)63U - i) & (uint64_t)1U);

tmp[OU] = tmp[BU] ~ (m & tab[i * (uint32 t)2U]);
// xmml := | tmp[1U] = tmp[1U] ~ (m & tab[(uint32 t)1U + i * (uint32 t)2U]);
Mov128(xmml
Pclmulgdg(x for (uint32_t i = (uint32_t)OU; i < (uint32_t)64U; i = i + (uint32_t)1U)

{

// xmm5 := ; uint64 t m = (uint64 t)eU - (x[OU] >> ((uint32 t)63U - i) & (uint64 t)1U);
Pclmulgdq(x tmp[OU] = tmp[OU] ~ (m & tab[(uint32 t)128U + i * (uint32 t)2U]);

tmp[1U] = tmp[1U] ~ (m & tab[(uint32 t)129U + i * (uint32 t)2U]);

}
Jf Xmm2 := x[8U] = tmp[OU];

p
% - 9.6k Valegsy x[1U] = tmp[1U];

P - 23k Hacl_Gf128 PreComp.c C/*l ®

What do we verity?

Safety

Memory- and type-safety. Mitigates buffer overruns, dangling pointers, code injections. No undefined behavior.

Functional correctness
Our fast implementations behave precisely as our simpler specifications.

Secrecy
Access to secrets, including crypto keys and private app data is restricted according to design.

Our specifications and implementations are written together, in one language (F*)
Drift between spec and implementation cannot happen.

Each application can do custom proofs beyond functional correctness and safety:
- non malleability (parsers)

- crypto games (TLS)

- security reduction (Merkle Trees)

- etc. etc.

Verified Assembly Language

in Vale / F*

We have a fast verified AES-GCM

Performance of various verified symmetric crypto / hash implementations

Vale AES-GCM-128

4
%]
~
o0
(V)
3
2
Jasmin ChaCha20 + Poly1305
Vale AES-GCM-128
[
HACL* ChachaPol
1 Vale AES-CBC+Poly1305 y ¥
v
Ironclad Apps SHA256 Andrew Appel SHA256 d
(%
0 9
2013 2014 2015 2016 2017 2018 2019

Year

2020

| Fastest |
. OpenSSL !
' |
. assembly |
. code :
| |

el

Optimizing AES-GCM
ciphertext; ciphertext, ciphertext; cipherts

. add add add add
init-
hash
secret mul secret mul secret mul secret mul
P mod P mod P mod moc
Important optimizations: (((init+cy) *s%P+c,)*s%P+cy)*s%P
- delay mod operations =2 (((init+cy) *s+c,) *s+c3) *s%P
- parallelize add/mul operations - ((init+c,) *s3+c, *s2+c, *s1) % P
- math+bitwise tricks for mod > ((init+¢,) * (3% P) + ¢, * (2% P) +c, *s1) % P

- careful instruction scheduling

Vale: exte
assembly

machine model (F*)

instructions

' type ins = Base

Trusted
| type reg = Rax | R Computing

| Mov(dst:reg, src:reg)
' | Add(dst:reg, src:reg)
' | Neg(dst:reg)

' eval(Neg(dst), ...) = ...

: print(Mov(dst, src), ...) =
. “mov “ + (...dst) + (...src)
 print(Add(dst, src), ...) = ... !

 eval(Mov(dst, src), ...) = ... 4
. eval(Add(dst, src), ...) = ...

[Mov(r1, r0), lemma_mov(...);
Add(r1, r0), lemma_add(...);
Add(r1, r1)] : demma_add(...);

nsible, automatec
anguage verificat

on

Vale code

machine interface

' procedure mov(...)

(.}

requires ...
ensures ...

procedure add(...)

procedure Triple() ...
requires rax < 100;
ensures
rbx == 3 * old(rax);
{
mov(rbx, rax);
add(rax, rbx);
add(rbx, rax);

Vale: extensible, automated
assembly language verification

machine model (F*)

instructions

typereg=r0 | rl| ...

' type ins = :
Mov(dst:reg, src:reg)

| Add(dst:reg, src:reg)

' | Neg(dst:reg) |

' eval(Neg(dst), ...) = ...

 eval(Mov(dst, src), ...) = ... 4
. eval(Add(dst, src), ...) = ...

[Mov(rl, r0), lemma_mov(...);
. Add(r1, r0), | | lemma_add(...);
. Add(rl, r1)] | demma_add(...); !

... verification condition ...

Verification condition

procedure Triple()
requires rax < 100; \ ___
ensures verification condition
rbx == 3 * rax; \;\raxo <100
{ |-
1 Move(rbx, rax); // --> rbx, (rbx; == rax, ==>
2 Add(rax, rbx); //-->rax, rax, + rbx, < 264 /\ (rax, == rax,+ rbx, ==>
3 Add(rbx, rax); [/ --> rbx3ﬁ§rbx1 + rax, < 2% /\ (rbx, == rbx, + rax, ==>
} ' ==3 * rax,)))

Demo

e Verification condition generation for Vale

Ugh! Default SMT query looks awful!

verification condition we want:
| reerene e bene e (rax, == rax,+ rbx, ==>
rbx, + rax, <2%% L.,

- verification condition we get:

' (forall (ghost_result_0:(state * fuel)).
' (let (s3, fc3) = ghost_result_0in
eval_code (Ins (Add64 (OReg (Rax)) (OReg (Rbx)))) fc3 s2 == Some s3 /\ |
eval_operand (OReg Rax) s3 == eval_operand (OReg Rax) s2 + eval_operand (OReg Rbx) s2 /\
== update_state (OReg Rax).r s3 s2) ==> |
lemma_Add s2 (OReg Rax) (OReg Rbx) == ghost_result_0 ==>
(forall (s3:state) (fc3:fuel). lemma_Add s2 (OReg Rax) (OReg Rbx) == Mktuple2 s3 fc3 ==>
Cons? codes_Triple.tl /\
(forall (any_resultO:list code). codes_Triple.tl == any_result0 ==>
(forall (any_resultl:list code). codes_Triple.tl.tl == any_resultl ==>
OReg? (OReg Rbx) /\ eval_operand (OReg Rbx) s3 + eval_operand (OReg Rax) s3 < 264

__

Let's write our own VC generator'

« ??? Maybe like this: ???]
Our own Vale
| VC generator

I'm lonely

andsad. —m—m—m ‘ ___ :

verlflcatlon condition we want:
i (rax, == raxy+ rbx, ==>
. rbx, + rax, < 2%4

* But won't it be part of TCB?
e And how do we interact with F*?
e Can we reuse F* features and libraries?

Let's write our own VC generator'

* Like this! (

Our own Vale

VC generator,

written in F¥*,

run by F*'s interpreter during type checking

I'm happy.

Pt ssnssssssss et e anes (rax, == rax,+ rbx, ==>
L rbX, +rax, < 2% L

* Part of TCB? No -- we verify its soundness in F*

* Interact with F*? Yes
e Reuse F* features and libraries? Yes

Let's write our own VC generator!
;’;;;;;;;a;;;;;igl;;z;::";} A e
' | A datatype:

type quickCode = ...
Our own Vale type quickCodes =
VC generator, | QEmpty
written in F.*' | QSeq of quickCode * quickCodes ...
run by F*'s interpreter | QLemma of ... (Lemma pre post) * ...

Like our earlier code AST,
but with assertions, lemma calls,

ghost variables, etc.

verification condition we want: | A g?
s (rax, == rax,+ rbx, ==> | _A e’

rbx, + rax, < 2% An F* term:
(forall rbx,. rbx; == rax, ==>
rax, + rbx,; < 2% /\
(forall rax, rax, == rax,+ rbx, ==>
rbx, + rax, < 2% /\ ...

