Dependent Types and Multi-monadic Effects in F**

Nikhil Swamy1 Cătălin Hritcu2 Chantal Keller1,3 Aseeem Rastogi4
Antoine Delignat-Lavaud2,5 Simon Forest2,5 Karthikeyan Bhargavan2 Cédric Fournet1,3
Pierre-Yves Strub6 Markulf Kohlweiss1 Jean-Karim Zinzindohoue2,5 Santiago Zanella-Béguelin1
1Microsoft Research 2Inria 3MSR-Inria 4UMD 5ENS Paris 6IMDEA Software Institute

Abstract
We present a new, completely redesigned, version of F**, a language that works both as a proof assistant as well as a general-purpose, verification-oriented, effectful programming language.

In support of these complementary roles, F** is a dependently typed, higher-order, call-by-value language with primitive effects including state, exceptions, divergence and IO. Although primitive, programmers choose the granularity at which to specify effects by equipping each effect with a monadic, predicate transformer semantics. F** uses this to efficiently compute weakest preconditions and discharges the resulting proof obligations using a combination of SMT solving and manual proofs. Isolated from the effects, the core of F** is a language of pure functions used to write specifications and proof terms—its consistency is maintained by a semantic termination check based on a well-founded order.

We evaluate our design on more than 55,000 lines of F** we have authored in the last year, focusing on three main case studies. Showcasing its use as a general-purpose programming language, F** is programmed (but not verified) in F**, and bootstraps in both OCaml and F#. Our experience confirms F**’s pay-as-you-go cost model: writing idiomatic ML-like code with no finer specifications imposes no user burden. As a verification-oriented language, our most significant evaluation of F** is in verifying several key modules in an implementation of the TLS-1.2 protocol standard. For the modules we considered, we are able to prove more properties, with fewer annotations using F** than in a prior verified implementation of TLS-1.2. Finally, as a proof assistant, we discuss our use of F** in mechanizing the metatheory of a range of lambda calculi, starting from the simply typed lambda calculus to System F0 and even μF0, a sizeable fragment of F** itself—these proofs make essential use of F**’s flexible combination of SMT automation and constructive proofs, enabling a tactic-free style of programming and proving at a relatively large scale.

Categories and Subject Descriptors D.3.1 [Programming Languages]: Formal Definitions and Theory—Semantics; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs—Mechanical verification

Keywords verification; proof assistants; effectful programming

1. Introduction
Proving and programming are inextricably linked, especially in dependent type theory, where constructive proofs are just programs. However, not all programs are proofs. Effective programmers routinely go beyond a language of pure, total functions and use features like non-termination, state, exceptions, and IO—features that one does not usually expect in proofs. Thus, while Coq ([The Coq development team] and Agda ([Norell 2007]) are functional programming languages, one does not typically use them for general-purpose programming—that they are implemented in OCaml and Haskell is a case in point. Outside dependent type theory, verification-oriented languages like Dafny ([Leino 2010]) and WhyML ([Filière and Paskevich 2013]) provide good support for effects and semi-automated proving via SMT solvers, but have logics that are much less powerful than Coq or Agda, and only limited support (if at all) for higher-order programming.

We aim for a language that spans the capabilities of interactive proof assistants like Coq and Agda, general-purpose programming languages like OCaml and Haskell, and SMT-backed semi-automated program verification tools like Dafny and WhyML. This language would provide the nearly arbitrary expressive power of a logic like Coq’s, but with a richer, effectful dynamic semantics. It would provide the flexibility to mix SMT-based automation with interactive proofs when the SMT solver times out (not uncommonly when working with rich theories and quantifiers). And it would support idiomatic higher-order, effectful programming with the predictability of call-by-value cost model of OCaml, but with the encapsulation of effects provided by Haskell.

Although such a language may seem beyond reach, several research groups have made significant progress, targeting various pieces of this agenda. For example, with Hoare Type Theory, Nanevski et al. ([2008]) extend Coq with support for interactive proofs of imperative programs. With Trellys and Zombie, Casinghino et al. ([2014]) design new dependently typed languages for interactive proving and programming while accounting for non-termination as an effect. With prior versions of F**, Swamy et al. ([2013a]) provide SMT-based automated proving for an ML-like programming language, but lack the ability to do interactive proofs. Still, as far as we are aware, currently no tool enables the mixture of proving and general-purpose programming with the degree of automation that we desire.

Building on this prior work, we present a fresh design and implementation of F**, a new candidate in pursuit of this goal, that straddles the threefold roles of programming language, program-verification tool, and proof assistant. We use F** to write effectful programs; to specify them (to whatever extent necessary) within

1Henceforth, we refer to the new language presented in this paper as “F**” while referring to the old, defunct version as “old-F**”.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

POPL’16, January 20–22, 2016, St. Petersburg, FL, USA
ACM 978-1-4503-3549-2/16/01...$15.00
http://dx.doi.org/10.1145/2837614.2837655

256
its functional core using dependent and refinement types; and to verify them using an SMT solver that automatically discharges proofs. Where proof obligations exceed the capabilities of SMT solving, interactive proofs can be provided within the language. Full verification is not mandatory in F*—the language encourages a style in which programs are verified incrementally. Programs with ML types are easily type-checked syntactically, while more precise specifications demand deeper proofs. After type-checking, F* programs can be extracted to OCaml or F# for execution.

Validating F*’s capabilities for programming, we have bootstrapped it using about 20,500 lines of F* (in addition to a few platform-specific libraries in OCaml and F#). We have also used F* to verify key parts of other complex, effectful programs, such as the cryptographic protocols underlying the TLS-1.2 standard (Diers and Rescigno 2008). Evaluating F* as a proof assistant, we have formalized several lambda calculi, and have even used it to mechanize part of the metatheory of \(\mu \text{F}^* \), a sizable fragment of F*. While it is premature to claim that F* is simultaneously a replacement for, say, Coq, OCaml and Dafny, our initial experience is encouraging—we know of no other language that supports semi-automated proving and general-purpose programming to the same extent as F*. Next, we summarize a few key features of the language.

Primitive effects in a lattice of monads

Enabling F* to play its varied roles is a design that structures the language around an extensible lattice of monadic effects. F*’s runtime system provides primitive support for all the effects provided by its extraction targets. Although available plurally, programmers can specify the semantics of each effect using several monads of weakest-precondition predicate transformers.

The granularity at which to model effects is the programmer’s choice, as long as (1) a distinguished PURE monad isolates pure computations from all other effects; (2) a monad GHOST encapsulates purely specification computations (for erasure); and, (3) a monad STATE provides a semantics to all the primitive effects together. Within these bounds, the programmer has the freedom to refine the effects of the language as she sees fit, arranging them in a join semi-lattice. By default, the lattice F* provides is shown below (with an implicit top element, \(\top \)).

\[
\text{PURE} \rightarrow \text{DIV} \rightarrow \text{STATE} \rightarrow \text{ALL} \rightarrow \text{EXN}
\]

PURE computations are at the very bottom. Using the PURE monad, programmers write pure, recursive functions. This monad forms F*’s logical core. It soundness depends crucially on a semantic termination check based on a well-founded order. The DIV effect is for possibly divergent code; STATE for stateful computations; and EXN for programs that may raise exceptions. Each edge in the lattice corresponds to a monad morphism. Using these morphisms, the F* type-checker implicitly lifts specifications in one monad to another. Other arrangements of the effects are possible (e.g., splitting readers and writers from STATE) depending on the needs of an application, as long as the semantics of each user-defined effect is compatible with the semantics of ALL the effects.

Expressive specifications with dependent, refinement types

Specifications in F* are expressed using dependent types—types indexed by arbitrary total expressions, with type-level computation defining an equivalence relation on types. In addition to predicate transformers, programmers use indexed inductive types and refinement types (types of the form \(\text{t} \times \text{t} (\phi) \), the sub-type of \(\text{t} \) restricted to those expressions \(e \) that validate the logical formula \(\phi (e / x) \)). Refinement types provide a natural notion of proof irrelevance and promote code re-use via subtyping.

Type-and-effect inference, with semi-automated proving

Given a program and a user-provided specification, F* infers a type and effect for it, together with a predicate transformer that fully captures the semantics of that computation. It then generates proof obligations to show that the specification is compatible with the inferred predicate transformer. These proof obligations can be discharged semi-automatically using a combination of SMT solving and user-provided proof terms.

Summary of contributions

Overall, our contribution is a comprehensive, new language design, evaluated both theoretically and empirically. The specific technical advances of our work include the following:

1. We present the design of a new programming language, F*, with a dependent type-and-effect system, based on a new, extensible, multi-monadic predicate-transformer semantics (introduced in §3 and covered throughout).

2. To ensure that F*’s core language of pure functions is normalizing, we employ a novel semi-automatic semantic termination checker based on a well-founded relation (§5.3).

3. We illustrate the expressiveness and flexibility of F*’s multi-monadic design using a series of programming examples, including an encoding of hyper-heaps, a new, region-inspired (Topi and Talpin 1997) model of the heap that provides lightweight support for separation and framing for stateful verification (§5). This illustrates that F* is flexible enough to allow programmers to use memory abstractions of their own.

4. We have formalized a core calculus \(\mu \text{F}^* \): a substantial fragment of F*, distilling the main ideas of the language. We prove syntactic type soundness, which implies partial correctness of the program logic (§6.1). Additionally, we use logical relations to prove consistency and weak normalization of \(\mu \text{F}^* \), a fragment of \(\mu \text{F}^* \) with only pure computations (§6.2).

5. We have developed a full-fledged open source implementation of F*, and report on our experience using it. As a programming language, we report on using F* as its own implementation language (§7.1). As a proof assistant, we use F* to formalize several lambda calculi, including \(\mu \text{F}^* \) (§6.1 and §7.2). As a verification system, we report on using F* in the re-design and verification of key portions of an existing implementation of TLS-1.2 by Bhargavan et al. (2013) (§5.3 and §7.3). In all cases, the expressiveness of F*’s type system, the flexibility afforded by its user-configurable effects, the semantic termination check, and the proof automation helped make verification feasible at scale.

Online material

The F* toolchain is open source, and binary packages are available for all major platforms. We provide an interactive editor mode in addition to the batch-mode compiler. An extensive interactive, online tutorial presents many examples and discusses details of the language beyond the limits of this paper. Additional materials are available online, including the full definitions and proofs for \(\mu \text{F}^* \) and \(\text{F}^* \). By necessity, the examples in this paper are greatly simplified versions of larger F* developments available online. All of these additional materials are available at https://www.fstar-lang.org/papers/mumon/

2. Dijkstra monads, generalized in F*

One point of departure for the new design of F* is the work of Swamy et al. (2013b), who propose the Dijkstra monad as a way of structuring and inferring specifications for higher-order stateful programs. In this section, we briefly review their proposal, note several shortcomings, and discuss how these are alleviated by F*’s generalized notion of a lattice of Dijkstra monads.

We intend for this section to serve as a high-level introduction to the new design of F*. While the details are also important, we
suggest that a reader not already familiar with monads and dependent types pay attention mainly to the high-level points in the prose.

2.1 Background: A single Dijkstra monad

Dijkstra (1975) defines the semantics of a program in terms of its weakest pre-condition, a function that transforms a predicate on the outcome of a computation to a predicate on that computation’s input. In the context of a dependently-typed language, Swamy et al. (2013b) observe that these weakest pre-condition predicate transformers form a monad at the level of types (rather than at the level of computations).

To illustrate this point, consider the semantics of stateful computations that may raise exceptions. The outcome of such a computation is a possibly exceptional result and a final state, whereas its input is an initial state. Weakest pre-conditions for such computations, as usual, transform predicates on the outcome (aka post-conditions) to predicates on the input (aka pre-conditions).

Using the notation of F∗ (which we explain more later), we can express these weakest pre-conditions as follows, where state is the type of the program state; either a string represents either a normal result \(\text{Inl} \langle \langle x \rangle \rangle \) or an error \(\text{Inr} \langle \langle \text{msg and string} \rangle \rangle \); and Type is the universe of types. We define \(\text{WP} \ a \), the signature of a weakest pre-condition predicate transformer for stateful, exceptional computations that may return a \(\text{a}-\) typed results, i.e., \(\tau \in \text{Type} \) a function that transforms a post-condition predicate \(q \) in a into a pre-condition \(p \). Pre.

It may be useful to some readers to think of \(\text{WP} \ a \) as a continuation monad.

\[
\begin{align*}
\text{Post} & : (\tau \rightarrow \text{Type}) \\
\text{Pre} & : \text{state} \rightarrow \text{Type} \\
\text{WP} & : (\alpha \rightarrow \text{Type}) \rightarrow \text{Post} \rightarrow \text{Pre}
\end{align*}
\]

Viewing \(\text{WP} \ a \) as a monad, Swamy et al. define two combinators \(\text{return} \) and \(\text{bind} \). The weakest pre-condition of a pure computation returning \(x = t \) is \(\text{return} \ x \rightarrow \) to prove any post, it suffices to prove post \(\langle \langle \text{Inl} \ x \rangle \rangle \), for the normal result \(x \) and the (unchanged) initial state of the computation.

\[
\text{return} \ (\alpha \rightarrow \text{Type}) \ (x: \alpha) : \text{WP} \ a = \text{fun} \ (\text{post} : \text{Post} \ a \ (s: \text{state})) \rightarrow \text{post} \ (\text{Inl} \ x) \ s
\]

The weakest pre-condition of the sequential composition of two computations is \(\text{bind} \ t_1 \ t_2 \text{wp1 wp2} \) when run in \(s_0 \), if the first computation produces state \(s_1 \) and either (1) raises an exception \(\text{Inr} \text{msg} \) in which case one must prove the post-condition immediately; or (2) returns normally with \(\text{Inl} \ v \), in which case one runs the second computation with \(v \) and \(s_1 \), proving the post-condition of its result.

\[
\begin{align*}
\text{bind} \ (\beta \rightarrow \text{Type}) \ (b : \text{Type}) \ (wp1 : \text{WP} \ a) \ (wp2 : (a \rightarrow \text{WP} \ b)) : \text{WP} \ b = \\
\text{fun} \ (\text{post} : \text{Post} \ b) \ (s_0 : \text{state}) \rightarrow wp1 \ (\text{fun} \ x \ s_1 \rightarrow \\
\text{match} \ x \ \text{with} \\
\text{Inr} \text{msg} \rightarrow \text{post} \ (\text{Inr} \text{msg}) \ s_1 \\
\text{Inl} \ v \rightarrow wp2 \ v \ \text{post} \ s_0)
\end{align*}
\]

Swamy et al. relate a computation to its semantics by introducing computation types \(\text{M t wp} \), where \(\text{M} \) is itself a monad parameterized by its result type \(\tau \) (as usual) and additionally indexed by \(\text{wp} : \text{WP} \ t \), its monadic weakest-precondition predicate transformer, i.e., \(\text{M} \) is a monad-indexed monad. Informally, in a totally correctness setting, given a computation \(e : \text{M t wp} \), and a post-condition \(q \), if \(e \) is run in a state \(s \) satisfying \(\text{wp} \ q \), then \(e \) produces a result and state \(s' \) satisfying \(q \rightarrow s' \). This technique is reminiscent of the parameterized monad of Atkey (2009) and the Hoare monad of Nanevski et al. (2008), who use computation types \(\text{H p t q} \) to describe computations with pre-condition \(p \), \(t \)-typed result, and post-condition \(q \).

2.2 Some limitations of a single Dijkstra monad

The Dijkstra monad has several benefits, e.g., type inference is built into the weakest pre-condition calculus. However, we observe that using just a single monad for all computations also has significant downsides. Using a single monad to describe all computations is akin to using a single type to describe all values. A uni-effect system, arguably adequate from a semantic perspective, is too coarse for practical purposes, particularly in a verification-oriented language.

Non-modular specifications. With just a single monad, even in effect-free code, or in code that only uses some effects, one must write specifications that mention all the effectful constructs. For example, with only a single monad at one’s disposal, even a pure computation \(1 + 2 \) is specified as \(\text{M int} \ (\text{fun} \ p h) \rightarrow \text{post} \ (\text{Inl} \ 3) \) \(h \), i.e., one explicitly states that \(1 + 2 \) returns \(3 \) without raising an exception and does not modify the state. Similarly, the computation \(x = t \) when \(x \text{ref t} \) would be typed as \(\text{M t} \ (\text{fun} \ p h) \rightarrow \text{post} \ (\text{Inl} \ (h \ (x))) \) \(h \) meaning that it returns the value of \(x \) dereferenced in the current heap; that it does not raise an exception; and that it leaves the state unmodified. This is cumbersome from a notational perspective and non-modular. While the notational overhead may be minimized by adopting various abbreviations, the non-modularity is pervasive: establishing that \(x \) does not modify the state and raises no exceptions requires a logical proof about its predicate transformer. Worse, while one can prove (via its predicate transformer) that \(1 + 2 \) does not mutate the state and does not raise exceptions, that it does not read the state is not evident from its specification. Indeed, to prove that it does not read the state would require moving to a richer logic, using, for example, separation logic, or a logic of program equivalence. Likewise, proving that \(x \) does not internally modify the state before restoring it is also difficult.

Combinatorial explosion of VCs. Consider sequentially composing \(n \) computations \(e_1 , \ldots , e_n \). When all these computations are typed in a single monad \(\text{M} \) of state and exceptions, the verification condition (VC) built by repeated applications of \(\text{bind} \) contains \(n \) control paths, rather than just one. In the worst case where each sub-computation may indeed raise an exception, one cannot do much better. Unfortunately, even in the common case where, say, many of the \(e_i \) are exception-free, using a single monad produces VCs with a number of paths equal to the worst case. When combined with conditionals and exception handlers, this results in an exponential explosion of VCs, even for simple, pure code. Proving that many of these paths are infeasible requires building and then performing logical proofs over needlessly enormous VCs.

2.3 Multiple Dijkstra monads in F∗

We would prefer instead to type a computation \(e \) in a monad suited specifically to the effects exhibited by \(e \), and no others. For example, pure expressions like \(1 + 2 \) should be typed using the \(\text{PURE} \) monad, whose predicate transformers make no mention of exceptions or state; \(\forall x \) in, say, a Reader monad which makes no mention of exceptions or the output state. With multiple monads, specifications are compact and modular; infeasible paths in verification conditions are pruned at the outset without needless logical proof; and many properties (e.g., state independence) can be established with simple syntactic arguments. Of course, multiple monads are a strict generalization: when syntactic arguments are insufficient, one can always fall back on detailed logical proofs. F∗’s lattice of Dijkstra monads enables all of this, as described next.

Rather than committing to a single Dijkstra monad at the outset, F∗ provides a lattice of such monads, each describing the semantics of some subset of all the effects provided by the language. For the moment, as in the previous section, we focus on state and exceptions as the only effects (returning to non-termination later). We define three Dijkstra monads, \(\text{PURE.WP} , \text{STATE.WP} , \text{EXN.WP} \), and show how they can be combined piecewise to produce \(\text{ALL.WP} \), a single monad (identical to the monad \(\text{WP} \) defined in §2.1) that captures the semantics of all the effects together.
PURE.WP To define the semantics of pure computations, we introduce (below) a Dijkstra monad **PURE.WP**. A weakest pre-condition for pure computations with an a-shaped result transforms pure post-conditions (predicates on a) to pre-conditions (propositions). The semantics of returning a value requires simply proving the post-condition of the value; and sequential composition of pure computations is just function composition of their WPs. The main point of distinction is that **PURE.WP** makes no mention of any of the effects.

PURE.Post a = a → Type
PURE.Pre = Type
PURE.WP a = PURE.Post a → PURE.Pre
PURE.return a (x:a) (post:PURE.Post a) = post x
PURE.bind a b (wp1:PURE.WP a) (wp2: a → PURE.WP b): WP b = fun (post:PURE.Post b) a → wp1 (fun x → wp2 x post)

STATE.WP The predicate transformer semantics of stateful functions is captured by **STATE.WP** below, which, as always, transforms post-conditions to pre-conditions. Stateful post-conditions relate the result of a computation to the final state: while pre-conditions are predicates on the input state. Notice there is nothing about exceptions. The combinator return t x shows how to return a value as a stateful computation—the state is unchanged. Meanwhile, bind defines the semantics of sequential composition by threading the state through. In addition to the combinators below, we also give semantics for the primitives for reading, writing and allocating state—we leave that for §2.2.

STATE.Post a = a → state → Type
STATE.Pre = state → Type
STATE.WP a = STATE.Post a → STATE.Pre
STATE.return a (x:a) (post:STATE.Post a) = fun s → post x s
STATE.bind a b (wp1:STATE.WP a) (wp2: a → STATE.WP b): WP b = fun (post:STATE.Post b) a → wp1 (fun x s1 → wp2 x post s1) s0

EXN.WP For exceptions, post-conditions are predicates on exceptional results, while pre-conditions are just propositions. The semantics of exceptional computations is just as in §2.1 except with no mention of state. To complete the semantics of exceptions, one would also provide a semantics for raise and exception handlers.

EXN.Post a = either a string → Type
EXN.Pre = Type
EXN.WP a = EXN.Post a → EXN.Pre
EXN.return a (x:a) (post:EXN.Post a) = post (Inl x)
EXN.bind a b (wp1:EXN.WP a) (wp2: a → EXN.WP b): WP b = fun (post:EXN.Post b) a → wp1 (fun x → match x with
Inl msg → post (Inr msg)
Inl v → wp2 v post)

Combining effects, piecewise To describe how effects compose, we specify morphisms among the monads. The morphisms define a partial order on the effects; for coherence, we require this order to form a join semi-lattice. For instance, to combine pure and stateful computations, we define:

PURE.lift_state a (wp:PURE.WP a) : STATE.WP a = fun (post:STATE.Post a) s → wp (fun x → post x s)

To combine pure functions with exceptions, we define:

PURE.lift_exn a (wp:PURE.WP a) : EXN.WP a = fun (post:EXN.Post a) s → wp (fun x → post (Inl x))

When combining state and exceptions, one usually has two choices, depending on whether the state is propagated or reset when an exception is raised. However, since exceptions and state are primitive in **F**

*, we do not have the freedom to choose. In the primitive semantics of **F**

*, as is typical, when an exception is raised, the state is preserved and propagated, rather than being reset—the monad **ALL.WP** (exactly the monad from §2.1) captures this primitive semantics. To combine state and exceptions, we define the two morphisms below:

STATE.lift_all a (wp:STATE.WP a) : ALL.WP a = fun (post:ALL.Post a) s → wp (fun x → post (Inl x) s') s

EXN.lift_all a (wp:EXN.WP a) : ALL.WP a = fun (post:ALL.Post a) s → wp (fun x → post x s)

The metatheory of **F**

* (§6.1) requires these lift functions to be monad morphisms, and it is easy to check that they satisfy the morphism laws, i.e., that the returns, binds and lifts commute in the expected way.

2.4 A lattice of monad-indexed monads for computations

The type system of **F** includes higher-rank polymorphism, type operators of arbitrary order, inductive type families, dependent function types, and refinement types. **F** is a call-by-value language. Following Moggi (1989), we observe that such a language has an inherenly monadic semantics. Every expression has a computation type **M** t wp, for some effect **M** while functions have arrow types with effectful co-domains, e.g.,

fun x → e has a dependent type of the form **t** x → **M** t wp, where the formal parameter **x** is in scope to the right of the arrow. Traditionally, the effect **M** is left implicit in type systems for ML; but, in **F**

*, the computation type **M** t wp ties a computation to its semantic interpretation as a predicate transformer, i.e., its wp. We introduce a computation type constructor **M** for each Dijkstra monad, e.g., **PURE** for **PURE.WP**, **EXN** for **EXN.WP** etc.

The main typing judgment for **F** has the following form:

\[\Gamma \vdash e : M t wp \]

meaning that in a context **Γ**, for any property post dependent on the result of an expression **e** and its effect, if wp post is valid in the initial configuration, then (1) **e**'s effects are delimited by **M**; and (2) **e** returns a t-typed result and a final configuration satisfying post, or diverges, if permitted by **M**.

The lattice on the Dijkstra monads induces a lattice on the computation-type constructors—we have **M** ⊆ **M**' whenever we have a morphism **M**.lift_**M**' between **M**.WP and **M.'WP**. Every two elements **M** and **M.'** are guaranteed to have a least upper-bound, but if the upper bound happens to be the implicit ⊤ element, we reject the program—this means that effects **M** and **M.'** cannot be composed. We write **M** ⊆ **M.'** for the partial function computing the non-⊤ least upper-bound of two computation-type constructors.

The type system of **F** is designed to infer the least effect for a computation, if one exists. The lattice and monadic structure of the effects are relevant throughout the type system, but nowhere as clearly as in (T-Let), the (derived) rule for sequential composition, which we illustrate below.

\[\Gamma \vdash e_1 : M_1 t_1 wp_1 \quad \Gamma, x : t_1 \vdash e_2 : M_2 t_2 wp_2 \quad M = M_1 \sqcup M_2 \quad wp_1' = M_1.lift_M wp_1 \quad wp_2' = M_2.lift_M wp_2 \quad x \notin FV(t_2) \]

\[\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : M t_2 (M.bind wp_1' (fun x → wp_2')) \]

The sequential composition of computations is captured semantically by the sequential composition of predicate transformers, i.e., by **M.bind**. (We will see the role of **M.return** in §3.2.) To compose computations with different effects, **M1** and **M2**, we lift them to **M**, the least non-⊤ effect that includes them both. Since **M** is unique, the effect computed for the program is unambiguous—this would not be the case if we used only, say, a partial order instead of a join semi-lattice on the effects. Since the lifts are morphisms, we get the expected properties of associativity of sequential composition and lifting—the specific placement of lifts is semantically irrelevant.

The next three sections present **F** in detail via examples of pure, divergent, ghost and stateful computations—we leave detailed examples of exceptions to the online material.
3. Purity and divergence

F* treats divergence differently than it does all other effects. Whereas the semantics of effects like state are given using predicate transformers, the semantics of divergence is built in to the language. In essence, given a predicate transformer like \(\text{STATE}$\).\(\text{WP}\), one can read its semantics in either a total- or partial-correctness setting—a programmer-provided attribute specifies which. By default, only the \(\text{PURE}\) and \(\text{GHOST}\) monads are interpreted in a total-correctness semantics; the other effects implicitly include divergence and are interpreted in a partial-correctness setting.

To control the use of divergence, the language provides two constructs for building recursive computations. The first, is for fixpoints in \(\text{PURE}\) and \(\text{GHOST}\); the second for general-recursive computations in any of the partial correctness monads. In this section, we focus on the \(\text{PURE}\) monad, its fixpoint construct, and other core features of \(\text{F*}\) including refinement and indexed types. We illustrate how these features are used for both programming and proving in the \(\text{PURE}\) monad, \(\text{F*}'\)s logical core; we also give an example of divergence in the \(\text{DIV}\) monad.

For our examples, we present fragments of the metatheory of a tiny lambda calculus. Although tiny, this is representative of many calculi for which we have mechanized soundness proofs in \(\text{F*}\). For example, our online materials illustrate how the proof techniques sketched here scale to our formalization of \(\mu\text{F*}\). We start, however, with a brief overview of \(\text{F*}'\)s concrete syntax and summarize the main typing features it provides.

3.1 Basic \(\text{F*}\)

Expressions in \(\text{F*}\) are essentially the same as \(\text{F#}\) or \(\text{Camllight}\), with some minor differences that we point out as necessary. The main innovation of \(\text{F*}\) is at the level of types—we point out the main typing features and provide a brief summary of their semantics, next.

Lambdas, binders and applications The syntax \(\text{fun}(b_1)\ldots(b_n)\rightarrow t\) introduces a lambda abstraction, where the \(b_i\) range over binding occurrences for variables. Binding occurrences are of the form \(\times t\) for binding a variable at type \(t\). A binding occurrence may be preceded by an optional \(\#\)-mark, indicating the binding of an implicit parameter. In lambda abstractions, we generally omit annotations on bound variables (and the enclosing parentheses) when they can be inferred. Applications are written using juxtaposition, as usual.

Logical specifications The language of logical specifications \(\phi\) and predicate transformers \(\text{wp}\) is included within the language of types. We use standard syntactic sugar for the logical connectives \(\lor, \land, \neg, \rightarrow\), and \(\iff\), which can be encoded in types. We also overload these connectives for use with boolean expressions—\(\text{F*}\) automatically coerces booleans to \(\text{True} as needed.

Computation types Computation types \(m\) have the form \(\text{M} t_1\ldots t_n\), where \(\text{M}\) is an effect constructor, \(t\) is the result type, and each \(t_i\) is a term (e.g., a type or an expression). For primitive effects, computation types have the shape \(\text{M} t\), where the index \(t\) is a predicate transformer. We also use a number of derived forms. For example, the primitive computation-type \(\text{PURE}(t:\text{Type})(wp:\text{PURE.WP})\) has two commonly used derived forms, shown below. For terms that are unconditionally pure, we introduce \(\text{Tot}\):

\[
\text{effect Tot}(t:\text{Type}) = \text{PURE} t \quad \text{(fun post \rightarrow \forall x. post x)}
\]

When writing specifications, it is often convenient to use traditional pre- and post-conditions instead of predicate transformers—the abbreviation \(\text{Pure} \) defined below enables this:

\[
\text{effect Pure}(t:\text{Type}(p:\text{PURE.Pre})(q:\text{PURE.Post})t) = \text{PURE} t \quad \text{(fun post \rightarrow p \land \forall x. q x \Rightarrow post x)}
\]

For better readability, we write \(\text{Pure} t\) \((\text{requires p}) (\text{ensures q}) \leftrightarrow \text{Pure} t \quad \text{p q}; \ "\text{requires}\) and \"\text{ensures}\) are semantically insignificant.

Arrows Function types and kinds are written \(\text{b} \rightarrow m\) to note the lack of enclosing parentheses on \(b\); as we will see, this convention leads to a more compact notation when used with refinement types. The variable bound by \(b\) is in scope to the right of the arrow. When the co-domain does not mention the formal parameter, we may omit the name of the parameter. For example, we may write \(\text{int} \rightarrow m\). We use the \(\text{Tot}\) effect by default in our notation for curried function types: on all but the last arrow, so long as the result type is not \(\text{Type}\), the implicit effect is \(\text{Tot}\).

\[
b_1 \rightarrow \ldots \rightarrow b_n \rightarrow M t \quad \text{wp} \leftrightarrow b_1 \rightarrow \text{Tot} (\ldots \rightarrow \text{Tot} (b_n \rightarrow M t \quad \text{wp}))
\]

So, the polymorphic identity function has type \(\forall a.\text{Type} \rightarrow a \rightarrow \text{Tot} a\). When the result type of the final computation is \(\text{Type}\), then the default effect is \(\text{Tot}\). For example, the type of the list type constructor is written \(\text{Type} \rightarrow \text{Type}\). These defaults reflect the common cases in our code base and our intention to interoperate smoothly with existing ML dialects.

Inductive types Aside from arrows and primitive types like int, the basic building blocks of types in \(\text{F*}\) are recursively defined indexed datatypes. For example, we give below the abstract syntax of the simply typed lambda calculus in the style of de Bruijn (we only show a few cases).

\[
\text{type typ} = \mid \text{TUnit} : \text{typ} \mid \text{TArr}: \text{arg:typ \rightarrow res:typ \rightarrow typ}
\]

\[
\text{type var} = \mid \text{EVar: x:var \rightarrow exp} \mid \text{ELam: t:typ \rightarrow body:exp \rightarrow exp ...}
\]

The type of each constructor is of the form \(b_1 \rightarrow \ldots \rightarrow b_n \rightarrow T t_1\ldots t_m\), where \(T\) is type being constructed. This is syntactic sugar for \(b_1 \rightarrow \ldots \rightarrow b_n \rightarrow \text{Tot} (T t_1 \ldots t_m)\), i.e., constructors are total functions.

Given a datatype definition, \(\text{F*}\) automatically generates a few auxiliary functions: for each constructor \(C\), it provides a discriminant \(\text{is}_C\); and for each argument \(a\) of each constructor, it provides a projector \(\text{Ca}\). We also use syntactic sugar for records, tuples and lists, all of which are encoded as datatypes. Unlike Coq, \(\text{F*}\) does not generate induction principles for datatypes. Instead, as we will see in \(\S3.3\), the programmer directly writes fixpoints and general recursive functions, and a semantic termination checker ensures consistency.

Types can be indexed by both pure terms and other types. For example, we show below an inductive type that defines the typing judgment of the simply-typed lambda calculus. The \(\text{TyVar}\) case shows discriminators and projectors in action, and also illustrates refinement types in \(\text{F*}\), which we discuss next.

\[
\text{type env} = \mid \text{var} \rightarrow \text{Tot} \quad \text{(option typ)}
\]

\[
\text{val extend} g t y = \text{if y=0 then Some t else g (y-1)}
\]

\[
\text{typing : env \rightarrow exp \rightarrow typ \rightarrow Type =}
\]

\[
\text{TyLam : #g:env \rightarrow #t:typ \rightarrow #e1:exp \rightarrow #t:typ \rightarrow (typing (extend g t) e1 t \rightarrow g (\text{ELam t e1}) (\text{TArr t t}))}
\]

\[
\text{TyApp : #g:env \rightarrow #e1:exp \rightarrow #e2:exp \rightarrow #t1:typ \rightarrow #t2:typ \rightarrow typing g e1 (\text{TArr t1 t2}) \rightarrow typing g e2 t11 \rightarrow typing g (\text{EAApp e1 e2}) t12}
\]

\[
\text{TyVar : #g:env \rightarrow x:var \rightarrow (is:Some (g x))}
\]

\[
\rightarrow typing g (\text{EVary x}) (\text{Some.v (g x))}
\]

Refinement types A refinement of a type \(t\) is a type \(x:t\{\phi\}\) inhabited by expressions \(e : T\) that additionally validate the formula \(\phi[e/x]\). For example, \(\text{F*}\) defines the type \(\text{nat} = \times:\text{int}[x \geq 0]\). Using this, we can write the following code:

\[
\text{let abs : int \rightarrow \text{Tot} \text{nat} = fun n \rightarrow if n < 0 \text{then } \text{false} \text{else n}
\]

Unlike strong sums \(\Sigma x:\phi\), \(\text{Sozeau 2007}\) in other dependently typed languages, \(\text{F*}'\)s refinement types \(\times t(\phi)\) are subtypes of \(t\) (as
such, they more closely resemble predicate subtyping [Rushby et al. 1998]; for example, nat < int. Furthermore, nat can be implicitly refined to int whenever \(n \geq 0 \). Specifically, the representations of nat and int values are identical—the proof of \(x \geq 0 \) in \(\text{int}(x) \geq 0 \) is never materialized. As in other languages with refinement types, this is convenient in practice, as it enables data and code reuse, proof irrelevance, as well as automated reasoning.

A new subtyping rule allows refinements to better interact with function types and effectful specifications, further improving code reuse. For example, the type of abs declared above is equivalent by subtyping to the following refinement-free type:

\[
x \cdot \text{int} \rightarrow \text{Pure int} \quad \text{(requires true)} \quad \text{(ensures \(\text{fun } y \rightarrow y \geq 0 \))}
\]

We also introduce syntactic sugar for mixing refinements and dependent arrows, writing \(\text{x} \cdot \phi \rightarrow \text{m} \cdot \tau \) for \(\text{x} \cdot \text{xt} (\phi) \rightarrow \text{m} \cdot \tau \).

Refinement types are more than just a notational convenience: nested refinements within types can be used to specify properties of unbounded data structures, and other invariants. For example, the type list nat describes a list whose elements are all non-negative integers, and the type \text{ref nat} describes a heap reference that always contains a non-negative integer.

Refinements and indexed types work well together. Notably, pattern matching on datatypes comes with a powerful exhaustiveness checker: one only needs to write the reachable cases, and \(F^* \) relies on all the information available in the context, not just the types of the terms being analyzed. For example, we give below an inversion lemma proving that the canonical form of a well-typed closed value with an arrow type is a \(\Lambda \)-abstraction with a well-typed body. The indexing of \(\text{d} \) with \(\text{emp} \), combined with the refinements on \(\text{e} \) and \(\tau \), allows \(F^* \) to prove that the only reachable case for \(\text{d} \) is \(\text{TyLam} \). Furthermore, the equations introduced by pattern matching allow \(F^* \) to prove that the returned premise has the requested type.

\[
\begin{align*}
\text{let em} & \quad \text{p} = \text{None} \\
\text{let val} & \quad \text{e} : \text{fun} \rightarrow \text{EUnit} \\
\text{val inv} & \quad \text{e} : \text{fun} \rightarrow \text{EUnit} \\
\text{let \(\text{inv} \cdot \text{e} \rightarrow \text{e} (\text{TyLam premise}) = \text{premise} \)}
\end{align*}
\]

3.2 Intrinsic vs. extrinsic proofs

\(F^* \)'s refinement types are more powerful than prior systems of refinement types, including old-F* [Swamy et al. 2013], the line of work on liquid types [Rondon et al. 2008], and the style of refinement types used by Freeman and Plenning [1991], that only support type-based reasoning about programs, i.e., the only properties one can derive about a term are those that are deducible from its type.

For example, in those systems, given id: \text{int} \rightarrow \text{int}, even though we may know that \(\text{id} \cdot \text{fun x \rightarrow x} \), proving that \(\text{id} \cdot 0 = 0 \) is usually not possible (unless we give id some other, more precise type). This limitation stems from the lack of a fragment of the language in which functions behave well logically; \text{int} \rightarrow \text{int} functions may have arbitrary effects, thereby excluding direct reasoning. Specifically, given \(\text{id} : \text{int} \rightarrow \text{int} \), we cannot prove that \(0 \cdot \text{fun} \equiv 0 \cdot \text{fun} \).

In the aforementioned systems, this type may not even be well-formed, since \(0 \cdot \text{fun} \) is not necessarily effect-free. In those systems, one can ask the question whether \(0 \cdot \text{fun} \equiv 0 \cdot \text{fun} \)—the type \(\text{int} \cdot \text{fun} \equiv 0 \cdot \text{fun} \) is well-formed, since it does not contain any potentially effectful expressions. Still, given \(\text{id} : \text{int} \rightarrow \text{int} \), prior refinement type systems fail to prove \(0 \cdot \text{fun} \equiv 0 \cdot \text{fun} \). One would have to enrich the type of \(\text{id} \) to \(\text{id} \rightarrow \text{fun} \cdot \text{int} \equiv 0 \cdot \text{fun} \) to conclude the proof—we call the style in which one enriches the type of a function as part of its definition “intrinsic” proving.

With its semantic treatment of effects, \(F^* \) supports direct reasoning on pure terms, simply by reduction. For example, \(F^* \) proves \(\text{List.map} \ (\text{fun x \rightarrow x + 1}) \ (\{1;2;3\}) = \{1;3;4\} \), given the standard definition of \(\text{List.map} \) with no further annotations—as expected by users of type theory. This style of “extrinsic” proof allows proving lemmas about pure functions separately from the definitions of those functions. \(F^* \) also provides a mechanism to enrich the type of a function extrinsically, i.e., after proving a lemma about a function, we can use \(F^* \)'s subtyping relation to give the function a more precise type.

The typing rule below enables this feature by using monadic returns. In effect, having proven that a term \(e \) is pure, we can lift it wholesale into the logic and reason about it there, using both its type \(\tau \) and its definition \(e \).

\[
\Gamma \vdash e : \tau \quad \text{Tot } \tau \quad \text{PURE return } e
\]

We discuss in detail the tradeoffs between intrinsic and extrinsic proofs, and transitioning between them, in our online tutorial.

3.3 Semantic proofs of termination

As in any type theory, the soundness of our logic relies on the normalization of pure terms. We provide a new fully semantic termination criterion based on a well-founded partial order \(\prec \) : \#a.Type \rightarrow \#b.Type \rightarrow a \rightarrow b \rightarrow \text{Type}, over all terms (pronounced “precedes”). Our rule for typing fixpoints makes use of the \(\prec \) order to ensure that the fixpoint always exists, as shown below:

\[
\begin{align*}
\Gamma & \vdash e : \text{PURE } \tau (\text{PURE } \text{return } e) \\
\Gamma & \vdash e : \text{PURE } \tau (\text{PURE } \text{return } e)
\end{align*}
\]

When introducing a recursive definition of the form \(\text{let rec } f : \tau \rightarrow \text{PURE } \tau \) \(= \text{fun } x \rightarrow e \), we type the expression \(e \) in a context that includes \(x \) and \(f \) at the type \(\text{pure } (f \cdot \delta \prec \delta x) \rightarrow \text{PURE } \tau \cdot \text{return } e \), where the decreasing metric \(\delta \) is any pure function. Intuitively, this rule ensures that, when defining the \(i \)-th iterate of \(f \), one may only use previous iterates of \(f \) defined on a strictly smaller domain. We think of \(\delta \) as a decreasing metric on the parameter, which \(F^* \) picks by default (as shown below) but which can also be provided explicitly by the programmer.

We illustrate rule (T-Fix) for typing factorial:

\[
\begin{align*}
\text{let rec factorial} & \quad \text{factorial} (n : \text{nat}) : \text{nat} = \text{if } n = 0 \text{ then } 1 \text{ else } \text{factorial (n - 1)}
\end{align*}
\]

The body of factorial is typed in a context that includes \(n \cdot \text{nat} \) and factorial: \(n \cdot \text{nat} \rightarrow \text{Tot } \text{nat} \), i.e., in this case, \(F^* \) picks \(\delta = \text{id} \).

At the recursive call \(\text{factorial} (n - 1) \), it generates the proof obligation \(n - 1 \prec n \). Given the definition of the \(\prec \) relation below (which includes the usual ordering on \(\text{nat} \)), \(F^* \) easily dispatches this obligation.

Our style of termination proofs is in contrast with the type theories underlying systems like Coq, which rely instead on a syntactic “guarded by destructors” criterion. As has often been observed (e.g., by [Barthe et al. 2004] among several others), this syntactic criterion is brittle with respect to simple semantics-preserving transformations, and hinders proofs of termination for many common programming patterns.

3.3.1 The built-in well-founded ordering

The \(F^* \) type-checker relies on the following \(\prec \) ordering:

1. Given \(i, j : \text{nat} \), we have \(i < j \iff i < j \).

2. Elements of the type \(\text{lex}_< \cdot \tau \) are ordered lexicographically, as detailed below.

3. The sub-terms of an inductively defined term precede the term itself, that is, for any pure term \(e \) with inductive type \(T = \text{lex}_< \cdot \tau \), if \(e \equiv \text{D} e_1 \ldots e_n \), we have \(e_i < e \) for all \(i \).

4. For any function \(f : \text{xt} \rightarrow \text{Tot } \tau \) and \(v, f \cdot v < f \).

For lexicographic orderings, \(F^* \) includes in its standard prelude the following inductive type (with its syntactic sugar):
Figure 1. Parallel substitutions on λ-terms

type lex_t = LexTop : lex_t | LexCons #: Type → a → lex_t → lex_t

where \(|v_1;\ldots;v_n|\) ≜ \(\text{LexCons} \ v_1 \ldots \ (\text{LexCons} \ v_n \ \text{LexTop})\)

For well-typed pure terms \(v, v_1, v_2, v_1', v_2'\), the ordering on \(\text{lex}_t\) is the usual one:
- \(\text{LexCons} \ v_1 \ v_2 < \text{LexCons} \ v_1' \ v_2'\), if and only if, either \(v_1 < v_1'\), or \(v_1 = v_1'\) and \(v_2 < v_2'\).
- If \(v < \text{lex}_t\) and \(v \neq \text{LexTop}\), then \(v < \text{LexTop}\).

For functions of several arguments, one aims to prove that a metric on some subset of the arguments decreases at each recursive call. By default, \(F^\star\) chooses the metric to be the lexicographic list of all the non-function-typed arguments in order. When the default does not suffice, the programmer can override it with an optional decreases annotation, as we will see below.

As an illustration of the flexibility of \(F^\star\)'s termination check, our online materials show how to encode accessibility predicates (Bove 2001), a technique that encompasses a wide range of termination arguments. Programmers can use this to define their own well-founded orders for custom termination arguments. While this illustrates the power of \(F^\star\)'s termination check, we found that the detour via accessibility predicates is very rarely needed (as opposed to Coq, for instance).

3.3.2 Parallel substitutions: A non-trivial termination proof

Consider the simply typed lambda calculus from §3.1. It is convenient to equip it with a parallel substitution that simultaneously replaces a set of variables in a term. Proving that parallel substitutions terminate is tricky—e.g., Adams (2000), Benton et al. (2012), Schäfer et al. (2015) all give examples of ad hoc workarounds to Coq's termination checker. Figure 1 shows a succinct, complete development in \(F^\star\).

Before looking at the details, consider the general structure of the function subst at the end of the listing. The first three cases are easy. In the \(\text{ELam} t\) case, we need to substitute in the body of the abstraction but, since we cross a binder, we need to increment the indexes of the free variables in all the expressions in the range of the substitution—of course, incrementing the free variables is itself a substitution, so we just reuse the function being defined for that purpose: we call subst recursively on body, after shifting the range of the substitution itself, using shift_subst.

Why does this function terminate? The usual argument of being structurally recursive on \(e\) does not work, since the recursive call at line 17 uses \(\text{sub}(y-1)\) as its first argument, which is not a sub-term of \(e\). Intuitively, it terminates because in this case the second argument is just a renaming (meaning that its range contains only variables), so deeper recursive calls will only use the \(\text{EVar}\) case, which terminates immediately. This idea was originally proposed by Allenkirch and Reus (1999).

To formalize this intuition in \(F^\star\), we instrument substitutions sub with a boolean flag renaming, with the invariant that if the flag is true, then the substitution is just a renaming (lines 10–11). This flag is computationally irrelevant; in \(F^\star\) we'll see how to use \(F^\star\)'s ghost monad to ensure that it can be erased. Notice that given a nat → \(\text{Tot}\) exp, it is impossible to decide whether or not it is a renaming; however, by augmenting the function with an invariant, we can prove that substitutions are renamings as they are defined. Using this, we provide a decreases metric (line 10) as the lexical ordering \(\text{\%}[\text{ord}_b = \text{is}_E\text{Var} \ e; \ \text{ord}_b = \text{is}_E\text{Var}(\text{e})]\).

Now consider the termination of the recursive call at line 17. If \(s\) is a renaming, we are done; since \(e\) is not an \(\text{EVar}\), and \(\text{sub}(y-1)\) is, the first component of the lexicographic ordering strictly decreases. If \(s\) is not a renaming, then since \(e\) is not an \(\text{EVar}\), the first component of the lexicographic order may remain the same or decrease; but \(\text{sub}\) is certainly a renaming, so the second component decreases and we are done again.

Turning to the call at line 15 if body is an \(\text{EVar}\), we are done since \(e\) is not an \(\text{EVar}\) and thus the first component decreases. Otherwise, body is a non-\(\text{EVar}\) proper sub-term of \(e\); so the first component remains the same while the third component strictly decreases. To conclude, we have to show that the second component remains the same, that is, \(\text{sub}_\text{shift}\) is a renaming if \(s\) is a renaming. The type of \(\text{sub}_\text{shift}\) captures this property. In order to complete the proof we finally need to strengthen our induction hypothesis to show that substituting a variable with a renaming produces a variable—this is exactly the purpose of the ensures-clause at line 9.

Such lexicographic orderings are used at scale not just in our definitions but also in our proofs. For instance, in the type soundness proof for \(\mu F\) (6) substitution composition, the substitution lemma, and preservation all use lexicographic orderings.

3.4 Divergence in the DIV effect

The predicate transformer \(\text{DIV}_W.P\) is identical to \(\text{PURE}_W.P\), except its semantics is read in a partial-correctness setting. Accordingly, a computation with effect \(\text{DIV}\) may not terminate. The non-termination is safely encapsulated within the monad, ensuring that the logical core remains consistent. We use the abbreviations \(Dv\), which is to \(\text{DIV}\) as \(\text{Tot}\) is to \(\text{PURE}\).

\(\text{DIV} dv (a:\text{Type}) = \text{DIV} a (\text{fun} \ x \rightarrow \forall x. \ \text{post} x)\)

We may use \(\text{DIV}\) when a termination proof of a pure function requires more effort than the programmer is willing to expend, and, of course, when a function may diverge intentionally.

For example, we give below a strongly typed, but potentially divergent evaluator for simply typed lambda calculus programs—the type guarantees that the type of the term being reduced is preserved. The evaluator is defined using typecheck and typed_step, a typechecker and single-step reducer—we only show their signatures.

\(\text{val typecheck : env}
ightarrow \text{exp}
ightarrow \text{Tot} \ \text{(option typ)}\)
\(\text{val typed_step : } e: \text{exp}(\text{isSome} \text{ (typecheck } e) \land \neg(\text{value } e)) \rightarrow \text{Tot}(e' \text{ (typecheck } e') = \text{typecheck } e)\)
\(\text{val eval : } e: \text{exp}(\text{isSome} \text{ (typecheck } e)) \rightarrow \text{Dv} (e' \text{ (typecheck } e') = \text{typecheck } e)\)
\(\text{let rec eval } e \equiv \text{if value } e \text{ then } e \text{ else evaluation} \text{ (typed_step } e)\)

When defining computations in one of the partial-correctness effects, \(F^\star\) allows the use of a general-recursive variant of the \(\text{let rec}\) form and does not check that recursive calls respect the well-founded ordering. Of course, with more effort, one can also prove that an evaluator for the simply typed lambda calculus is
normalizing. We provide several such proofs online, e.g., using hereditary substitutions.

4. Translucent abstractions with GHOST

Leveraging its lattice of effects, F* uses a monad GHOST to encapsulate computationally irrelevant code. Using this feature, we revisit the example of Figure 1 and show how to mark specification-only parts of the program for erasure. In particular, we redefine the type presub as shown below:

```plaintext
type presub = { sub: var → Tot exp; renaming: erased bool }
```

The field renaming is now typed as an erased bool, meaning that its value is irrelevant to all non-GHOST code, and hence safe to erase.

We define GHOST (a.Type) (wp:GHOST.WP a) to be an abstract alias of the PURE (a.Type) (wp:PURE.WP a), i.e., the predicate transformer semantics of GHOST computations is identical to that for PURE computations (interpreted in the total correctness sense), except the GHOST monad is a distinct point in F*’s effect lattice. We provide a morphism, PURE.lift_GHOST, an identity from PURE.WP a to GHOST.WP a, but none in the other direction. Type-level expressions are allowed to be GHOST computations—pure computations are implicitly lifted to GHOST when used at the type level. Computations with GHOST effect cannot be composed directly with any non-ghost computations. In essence, specification-only computations are isolated from computationally relevant code. For convenience, we define the abbreviation G, which is to GHOST as Tot is to PURE.

```plaintext
effect G (a.Type) = GHOST (a.Type) (fun p → ∀x. p x)
```

When combined with the other abstraction features provided F*, the encapsulation of specifications provided by the GHOST monad can be used for targeted erasure within computations. For example, F*’s standard library includes the module Ghost below, which provides an abstract type erased—a—the private qualifier hides the definition of erased a from clients of the module, while within the module, erased a simply unfolds to a. The only function we provide to destruct the erased type is reveal, which is marked with the G effect—meaning it can only be used in specifications. As such, the erased a type is opaque to clients and any total expression returning an erased t can safely be erased to ()

```plaintext
module Ghost
private type erased (a.Type) = a
val reveal: #a.Type → erased a → G a
let reveal x = x
val erase: #:a.Type → x:a → Tot (e:erased a) ({reveal e = x})
let erase x = x
```

Importantly, the abstraction of erased a is not completely opaque. Within specifications, the abstraction is “translucent”—using reveal, one can extract the underlying a-typed value, as in the revised type sub below. To construct erased values, we use the erase function, as in the initializer of the renaming field below.

```plaintext
type sub = s.presub{reveal s.renaming = → (∀ x. is_EVar (s.sub x))}
let sub.inc : sub = {renaming=erase true; sub=fun y → EVar (y+1)}
```

The rest of the code in Figure 1 is unchanged, except that every use of s.renaming in the specifications is wrapped with a call to reveal. We plan to implement a procedure to automatically insert calls to reveal within specifications, along the lines of the bool-to-Type coercion that we already insert automatically.

5. Specifying and verifying stateful programs

We now turn to some examples of verified stateful programming. A primary concern that arises in this context is the manner in which the heap is modeled—specific choices in the model have a profound impact on the manner in which programs are specified and verified, particularly with respect to (anti-)aliasing properties of heap references. We show how to instantiate F*’s STATE monad, picking different representations for the state and discussing various tradeoffs. A new contribution is a region-inspired, structured model of memory that we call hyper-heaps. Illustrating the use of hyper-heaps, we present an example adapted from our ongoing work on verifying an implementation of TLS-1.2.

5.1 A simple model of the heap

F*’s dynamic semantics provides state primitively, where the state is a map from heap references, locations ℓ : ref t, to values of type t. To model this, F*’s standard library provides a type heap, with the following purely specificationial (i.e., ghost) functions. The functions sel and upd obey the standard McCarthy [1962] axioms, as well as has (upd h r v s = (rsv || has h s)). Using the function has, we define dom, the set of references in the domain of the heap. We trust that this model is a faithful, logical representation of F*’s primitive heap.

```plaintext
val sel : #t.Type → heap → ref t → G t
val upd : #t.Type → heap → ref t → t → G heap
val has : #t.Type → heap → ref t → G bool
```

When defining the STATE monad in [22.3], we left the representation of the type state unspecified. One obvious instantiation for state is heap, using which one can provide signatures for the stateful primitives to dereference, mutate, and allocate references. Although feasible—we have written a fair amount of code using heap as our model of memory—we find the style wanting, for the following reason. A common verification task is to prove that mutations to a data structure a do not interfere with the invariants of another structure b whose references are disjoint from the references of a. Stating and proving this property using just the heap type is heavy: we need to state a quadratic number of inequalities between the references of a and b, and we must reason about all of them using a quadratic number of proof steps. Our online tutorial provides a detailed example illustrating the problem, which is not unique to our system but also affects tools like Dafny (Leino 2010) that adopt a similar, flat memory model.

This “framing” problem for stateful verification has been explored in depth, not least by the vast literature on separation logic. Rather than moving to separation logic (which could, we speculate, be encoded within F*’s higher-order logic, at the expense of giving up on SMT automation), we address the framing problem by adopting a richer, structured model of memory, called hyper-heaps and described next.

5.2 Hyper-heaps

Hyper-heaps provide an abstraction layer on top of the concrete, flat heap provided by the F* runtime. Like separation logic, hyper-heaps provide a memory model that caters well to the common case of reasoning about mutations to objects that reside in disjoint regions of memory. The basic structure provided by hyper-heaps is illustrated in the figure alongside. At the bottom, we have the concrete heap with a flat arrangement of heap cells (corresponding to references). The abstraction layer above partitions these heap cells into several disjoint regions—heap:

```
hyper-heap:
```

which the disjointness of
heap cells between regions is a key invariant of the abstraction. By allocating references from disjoint objects in separate regions, the invariant guarantees that all the references are pairwise distinct. Beyond the disjointness invariant, hyper-heaps provide a tree-shaped hierarchy of regions, by associating with each region a region identifier, a path from a distinguished root to a specific region associated with a particular fragment of the heap. The hierarchical structure supports allocating an object \(v \) in some region \(0 \), and its disjoint sub-objects in regions \(0.0 \) and \(0.1 \); by allocating another object \(v' \) in a set of regions rooted at region \(1 \), our disjointness invariant ensures that all the references in \(v \) and \(v' \) are pairwise distinct.

Formalizing this in F\(^*\), we define below the type of hyper-heaps, hh, which maps region identifiers rid to disjoint heap fragments—the type map t s is a map from t to s with functions msel, mupd, mhas, and mdom with a semantics analogous to the corresponding functions on the heap type. Note that rid is an erased type; it has no computational content. We define the type of hyper-heap references: \(\text{ref } r a \) is a reference to an a-value residing in region \(r \)—the index \(r \) is ghost. We also define some utilities to easily read and write refs.

type rid = erased (list nat)
type hh = m:map rid heap | m:map m hh | m:map m hh
private type ref (rid: Type) = ref a
let hsel #a #h (l:ref r a) = H:sel (msel hh r) l
let hupd #a #h (l:ref r a) v = mupd hh (Heap:upd (msel hh r) l) v

Next, we provide signatures for stateful operations to create a new region, to allocate a reference in a region, and to dereference and mutate a reference.

val new region: r0:rid → STATE r id (fun post hh →
\forall r0. not (msah m hh r) \land \text{extends } r0 \Rightarrow \text{post } r0 (msah hh r a))
val alloc: #:Type → r:id → v:ct → STATE (r:ref t) (fun post hh →
\forall l. fresh hh l \Rightarrow \text{post } l (hupd hh l v))
val (!): #:Type → #:ref → l:ref t → STATE t (fun post hh →
\forall l. fresh hh l \Rightarrow \text{post } (hupd hh l v))

Hyper-heaps are a strict generalization of heaps. One can always allocate all objects in the same region, in which case the heap-hierarchy structure provides no additional invariants. However, making use of the hyper-heap invariants where possible makes specifications much more concise. As it turns out, they also make verifying programs more efficient. On some benchmarks, we have noticed a speedup in verification time of more than a factor of 20 when using hyper-heaps, relative to heap—we explain below why.

First, without hyper-heaps, consider a computation \(f \) run in a heap \(h0 \) and producing a heap \(h1 \) related by modifies \(\{ x1,...,xn \} h0 \), meaning that \(h1 \) differs from \(h0 \) at most in \(x1 \) ... \(xn \) (and in some new references). Next, consider \(Q = \text{fun } h \rightarrow P (\text{sel } h y1) \ldots (\text{sel } h ym) \), such that \(Q \) \(h1 \) is true. In general, to prove \(Q \) \(h1 \) one must prove a quadratic number of inequalities, e.g., to prove \(\text{sel } h1 y1 = \text{sel } h0 y1 \) requires proving \(y1 \notin \{ x1,...,xn \} \).

However, if one can group references that are generally read and updated together into regions with a common root, one can do much better. For example, moving to hyper-heaps, suppose we place all the \(x1 \) ... \(xn \) in region \(r \). Suppose \(y1 \) ... \(ym \) are all allocated in some region \(r \). Now, given two hyper-heaps \(h0 \) and \(h1 \) related by modifies \(\{ r \} h0 h1 \), consider proving the implication \(P (\text{sel } h0 y1) \ldots (\text{sel } h0 ym) \Rightarrow P (\text{sel } h1 y1) \ldots (\text{sel } h1 ym) \). Expanding the definition of \(\text{sel} \), it is easy to see that to prove this, we only need to prove that \(\text{sel } hh h0 y \) = \(\text{sel } hh h1 y \), which involves proving that \(r \) and \(r \) do not overlap. Having proven this fact once, we can simply rewrite all occurrences of the sub-term \(\text{sel } hh h0 y \) to \(\text{sel } hh h1 y \) everywhere in our formula and conclude immediately—in an SMT solver, such rewrites are immediate via unification. Thus, in such (arguably common) cases, what initially required proving a number of inequalities quadratic in the number of references is now quadratic in the number of regions—in this case, just one. Of course, in the degenerate case where one has just one reference per region, this devolves back to the performance one would get without regions at all. However, typically the number of regions is much smaller than the number of references they contain. The use of region hierarchies serves to further reduce the number of region identifiers that one refers to, making the constants smaller still.

Whereas regions have generally been used for memory management, hyper-heaps are just an abstraction for reasoning about anti-aliasing. As such, we run programs using the flat heap provided by the runtime system of our target language. Rather than moving to a region-based type system, F\(^*\) is expressive enough to encode a region-like discipline—hyper-heaps are just implemented as a library in F\(^*\). Other heap models can be used instead, so long as they can be realized on a flat heap. The metatheory of F\(^*\) discussed in §6 identifies sufficient conditions for a user-defined memory model to be realized on the flat heap provided primitives—we have shown that hyper-heaps meet those conditions.

5.3 Hyper-heaps in action: Stateful authenticated encryption

The example of this section distills some essential elements from our verification of two modules in the core stateful, transport encryption scheme of TLS-1.2—the focus is on modeling and verifying their ideal functionality. The full development, with further subtleties, is available online. The TLS verification is further discussed in §7.3.

At a high level, one of the guarantees provided by the TLS protocol is that the messages are received in the same order in which they were sent. To achieve this, TLS builds a stateful, authenticated encryption scheme from a (stateless) "authenticated encryption with additional data" (AEAD) scheme (Rogaway 2002). Two counters are maintained, one each for the sender and receiver. When a message is to be sent, the counter value is authenticated using the AEAD scheme along with the rest of the message payload and the counter is incremented. The receiver, in turn, checks that the sender's counter in the message matches hers each time a message is received and increments her counter.

Cryptographically, the ideal functionality behind this scheme involves associating a stateful log with each instance of an encryptor/decryptor key pair. At the level of the stateless functionality, the guarantee is that every message sent is in the log and the receiver only accepts messages that are in the log—no guarantee is provided regarding injectivity or the order in which messages are received. At the stateful level, we again associate a log with each key pair and here we can guarantee that the sends and receives are in injective, order-preserving correspondence. Proving this requires relating the contents of the logs at various levels, and, importantly, proving that the logs associated with different instances of keys do not interfere.

We sketch the proof in F\(^*\).

We start with a few types provided by the AEAD functionality.

```f
module AEAD

type encryptor = Enc : #:rid → log:ref r (seq entry) → key → encryptor
and decryptor = Dec : #:rid → log:ref r (seq entry) → key → decryptor
and entry = Entry : ad:nat → c:cipher → p:plain → basicEntry

An encryptor encapsulates a key (an abstract type whose hidden representation is the raw bytes of a key) with a log of entries stored in the heap for modeling the ideal functionality. Each entry associates a plain text \( p \), with its cipher \( c \) and some additional data \( ad:nat \). The log is stored in a region \( r \), which we maintain as an additional (erasable) field of \( \text{Enc} \). The decryptor is similar. It is worth pointing out that although AEAD is a stateless functionality, its cryptographic modeling involves the introduction of a stateful log. Based on a cryptographic assumption, one can view this log as ghost.

On top of AEAD, we add a Stateful layer, providing stateful encryptors and decryptors. \text{StEnc} encapsulates an encryption key
```
provided by AEAD together with the sender’s counter, ctr, and its
own log of stateful entries, associates plain-texts with ciphers. The
log and the counter are stored in a region r associated with the
stateful encryptor. StDec is analogous.

module Stateful

| type st_enc = StEnc : \#r:rid \rightarrow \log : ref r (seq st_entry) \rightarrow ctr : ref r nat \rightarrow key:encryptor (extends (Enc.r key) r) \rightarrow st_enc |
| and st_dec = StDec : \#r:rid \rightarrow \log : ref r (seq st_entry) \rightarrow ctr : ref r nat \rightarrow key:decryptor (extends (Dec.r key) r) \rightarrow st_dec |
| and st_entry = StEntry : c:cipher \rightarrow p:plain \rightarrow st_entry |

Exploiting the hierarchical structure of hyper-heaps, we store the
AEAD encryptor in a distinct sub-region of r—this is the meaning of
the extends relation. By doing this, we ensure that the state
associated with the AEAD encryptor is distinct from both log and
ctr. By allocating distinct instances k1 and k2 in disjoint regions,
we can prove that using k1 (say decrypt k1 c) does not alter the
state associated with k2. In this simplified setting with just three
references, the separation provided is minimal; when manipulating
objects with sub-objects that contain many more references (as
in our full development), partitioning them into separate regions
provides disequalities between their references for free.

Encryption

To encrypt a plain text p, we call Stateful.encrypt,
shown below. It calls AEAD_GCM.encrypt with its current counter
as the additional data to associate with this message, and obtains a
cipher text c. Then, we increment the counter, and return c. In
the ideal cryptographic functionality, we formally model this by also
associating c with p and recording it by snoc’ing it to the log.

let encrypt (StEnc log ctr key) p =
let c = AEAD_GCM.encrypt key ctr p in
log := snoc !log (StEntry c p); ctr := ctr + 1; c

Main invariant

The main invariant of these modules is captured
by the predicate st_inv (st_enc) (st_dec) (hh:hh). It states that the log
at the AEAD level is in point-wise correspondence with the
Stateful log, where the additional data at each entry in the AEAD
log is the index of the corresponding entry in the Stateful log.
Additionally, the encryptor’s counter is always the length of the log,
and the decryptor’s counter never exceeds the encryptor’s counter.
In addition, we have several technical heap invariants: the stateful
encryptor and decryptor are in the same region; they share the same
log at both levels, but their counters are distinct.

Decryption

To try to decrypt a cipher c with a stateful key d, we
need to first prove that d satisfies the invariant. Then, decrypt c
calls AEAD_GCM with the current value of the counter. If it succeeds,
we increment the counter.

val decrypt = d:st_dec \rightarrow c:cipher \rightarrow ST (option plain)

(requires (fun h \rightarrow \exists e, st_inv e d h))

| (ensures (fun h0 res h1 \rightarrow modifies \{StDec.r d\} h0 h1 |
| ∧ let log0, log1 = hsel h0 (StDec.log d), hsel h1 (StDec.log d) in
| let r0, r1 = hsel h0 (StDec ctr d), hsel h1 (StDec ctr d) in
| log0 = log1 ∧ (\forall e, st_inv e d h1) \land
| (match res with
| \{ | Some p \rightarrow r1 = r0 + 1 \land p = Entry.p (index log0) |
| \land \rightarrow length log0 \land c \neq Entry.c (index log0)) \} |
| (let decrypt (StDec log ctr key) c =
| let res = AEAD_GCM.decrypt key \lambda ctr in
| if isSome res then ctr := ctr + 1; res |

Via the invariant, we can prove several properties about a well-
typed call to decrypt d c. First, we prove that it modifies only regions
that are rooted at decrypt of d. In this the hierarchical structure of
hyper-heaps is helpful—modifies res h0 h1 is a predicate defined to
mean that h1 may differ from h0 only in regions that are rooted
at one of the regions in the set rs (and, possibly, in any new allocated
regions that are not present in h0). Next, we prove that the stateful
logs are unmodified, and that the invariant is maintained. Finally, we
prove that we return the current entry in the reader’s current position
in the log and then advance the position, except if there are no more
entries or if the cipher is incorrect.

6. Metatheory

Working out the metatheory of the full F* language is a work in
progress. Our eventual goal is a mechanized metatheory for F*
in F*, and given that F* is also implemented in F*, we aim to use its
verification machinery to verify the implementation as well—we are
still far from this goal.

For the moment, we identify two subsets of F* called \mu F* (micro-
F*) and \mu F* (pico-F*), which contain many interesting features of
the full language, and study their metatheory in various ways. For
\mu F*, we prove partial correctness for the specifications of effectful
computations via a syntactic progress and preservation argument. For \mu F*, a pure fragment of \mu F*, we prove weak normalization and
logical consistency using logical relations. Both these developments
are manual proofs.

6.1 Partial correctness of \mu F*

\mu F* is a lambda calculus with dependent types; type operators;
subtyping; semantic termination checking; a lattice of user-defined
monads; predicate transformers; user-defined heap models,
and higher-order state. This covers most of the semantically interesting
features of the language; however, there are some notable exclusions.
Prominently, \mu F* lacks inductive datatypes (we bake-in a few
constants, like int and bool) and their corresponding match construct,
providing i0, a branch-on-zero construct, instead. \mu F* also does
not cover erasure via GHOST. We aim to scale \mu F* to cover the full
language in the future.

Figure 2 lists the expression typing rules of \mu F* that have
not already been shown earlier (except the trivial rule for typing
constants). We use a more compact notation here rather than the
corresponding syntax of F* (e.g. \lambda instead of fun and math fonts). The
rules for variables and \lambda-abstractions are unsurprising. In each case,
the expression is in Tot, since it has no immediate side-effects.

Typing an application is subtle—we have two rules, depending
on whether the function’s result type is dependent on its argument.
If it is, then only rule (T-App1) applies, since we need to substitute
the formal parameter x with the argument, we require the actual
argument e2 to be pure; if e2 were impure, the substitution would
cause an effectful term to escape into types, which is meaningless.
In rule (T-App2), since the result is not dependent on the argument,
no substitution is necessary and the argument can be effectful. Note
that, in both cases, the formal parameter x can appear free in the
predicate transformer wp of the function’s (suspended) body.

Rule (T-If0) connects the predicate transformers using an \ite_M
operator, which we expect to be defined for each effect. For instance,
for \pure ite ite is defined as follows:

\ite PURE wp w1 w2 p =
bindPURE wp \lambda i. i=0 \Rightarrow wp1 p \land i=0 \Rightarrow wp2 p

Subsumption (T-Sub) connects expression typing to the subtyping
judgment for computations, which has the form \Gamma \vdash M : \Gamma \vdash wp <; M t wp. The subtyping judgment for computations only has the
(S-Comp) rule, listed in Figure 3; it allows lifting from one effect
from another, strengthening the predicate transformer, and weakening
the type using a mutually inductive judgment \Gamma \vdash t : \Gamma <; t'. To strengthen
the predicate transformer, it uses a separate logical validity judgment
\Gamma \vdash \phi that gives a semantic to the typed logical constants and
equates types and pure expressions up to convertibility—this is the
judgment that our implementation encodes to the SMT solver. The
judgment \Gamma \vdash t : \Gamma <; t' includes a structural rule (Sub-Fun) and a rule
between a state \(s \) in such a heap model and the primitive heap \(H \), \(\Gamma \vdash s \leadsto \text{asHeap}(H) \), and show that it is preserved by reduction.

Meta-theorems We prove a partial correctness theorem for \(M \) computations (where \(M \) is any point in the user-defined monad lattice) w.r.t. the standard CBV operational semantics of \(\mu F^* \). The theorem states that a well-typed \(M \) expression is either a value that satisfies ALL post-conditions consistent with its (lifted) predicate transformer, or it steps to another well-typed \(M \) expression.

Theorem 1 (Partial Correctness of \(M \)). If \(\Gamma \vdash (H,e) : M \wp p \) then for all \(s \), post such that \(\Gamma \vdash s \leadsto \text{asHeap}(H) \), \(\Gamma \vdash \text{PostALL}(t) \) and \(\Gamma \vdash \text{liftAll} M \wp p \) post \(s \), either \(e \) is a value and \(\Gamma \vdash \text{post} s \), or \((H,e) \leadsto (H',e') \) such that for some \(\Gamma' \geq \Gamma \), \(\Gamma' \vdash (H',e') : M \wp p \), \(\Gamma' \vdash s' \leadsto \text{asHeap}(H') \), and \(\Gamma \vdash \text{liftAll} M \wp p \) post \(s' \).

For \(\text{PURE} \) expressions, we prove the analogous property, but in the total correctness sense and with respect to liberal reduction.

Theorem 2 (Total Correctness of \(\text{PURE} \)). If \(\Gamma \vdash e : \text{PURE} t \wp p \) then for all \(p s.t. \vdash p : \text{PostPure}(t) \) and \(\vdash \text{wp} p \), we have \(e \leadsto v \) such that \(v \) is a value, and \(\vdash \text{wp} v \).

Both these results assume the consistency of the validity judgment and total correctness additionally relies on the weak normalization of \(\text{PURE} \) terms.

6.2 Consistency and weak normalization of \(\rho F^* \)

We have proved both consistency and weak normalization for \(\rho F^* \), a pure fragment of \(\mu F^* \) including: dependent function types, a weakest precondition calculus, logical formulas and the validity judgment, fixpoints with metrics and our semantic termination check, a well-founded ordering on naturals, and subtyping.

The syntax of \(\rho F^* \) is listed in Figure 4. Values \((v) \) include natural numbers \((n) \), lambda expressions, and fixpoints with metrics as in \(\rho F^* \). Expressions \((e) \) include variables, values, applications, and successor and predecessor operations on naturals. Types \((t) \) are simplified and only include naturals and dependent functions \((x : A \to t) \), where computation types \(c \) are always of the form \(\text{PURE} t \wp p \). In \(\rho F^* \) weakest preconditions \((\wp p) \) and logical formulas \((\phi) \) are represented not as types, as in \(F^* \) and \(\mu F^* \), but as separate syntactic categories—the \(\wp \) connectives (like bind and return) are built in as primitives, rather than encoded as type-level computation. The logic includes order and equality comparison on naturals \((e_1 < e_2) \), as atomic formulas, and second-order quantification over predicates \((\forall \alpha, \phi)\), which we use for quantification over post-conditions.

The type system is simplified with respect to \(F^* \) and \(\mu F^* \), but still includes the semantic termination check, a logical validity judgment \((\vdash)\), and subtyping. Reduction \((\leadsto)\) in \(\rho F^* \) is CBV, deterministic, and otherwise standard.

The termination argument uses logical relations and is similar to the arguments of System T (Harper [2015] and Trellys/Zombie [Caslinghino et al. 2014]). The logical relation is defined as 4 mutually recursive functions: \(E \) for computation types, \(V \) for regular types, \(W \) for \(\wp \)s, and \(P \) for formulas. Each of these functions carries an extra parameter, \(\sigma \), a map from predicate variables to sets of values which we use to interpret post-conditions \(\pi \). Post-conditions \(\pi \) are sets of
values that are closed under strong beta reduction and expansion (i.e. below lambdas). The interpretation of computation types \(E[c, \sigma] \) is sets of expressions \(e \) that for all post-conditions \(\pi \) for which the pre-condition of \(c \) holds (\(\pi \in W[c, \sigma] \)) reduce to a value \(v \) that is in the right \(V \) interpretation (\(v \in V[t, \sigma] \)) and for which \(\pi \) holds. Note that termination of \(e \) is conditioned on \(W[c, \sigma] \) being non-empty, i.e. on the existence of at least one post-condition \(\pi \) for which the pre-conditions hold. The interpretation \(V \) of regular types as sets of values is standard. The interpretation \(V \) is more interesting and maps each \(wp \) to the set of post-conditions \(\pi \) for which the corresponding pre-condition with respect to \(wp \) holds. \(V \) is formally defined on computation types instead of just \(wp \), since in case the \(wp \) is \(\text{tot} \) we only select post-conditions which hold for all values of the right type. return \(e \) is interpreted as those post-conditions which hold for all values to which \(e \) reduces. bind \(e \) is interpreted as the bind of the set monad. \(P \) associates a standard Tarski-style semantics to formulas, using the mapping \(\sigma \) for predicate variables.

The consistency and weak normalization of \(\mathcal{P} \) are corollaries of the soundness of the logical relation and typing with respect to this logical relation model.

Theorem 3 (Consistency of validity for \(\mathcal{P} \)), \(\cdot \not\vdash \text{false} \)

Theorem 4 (Weak normalization of \(\mathcal{P} \) for \(\mathcal{P} \)), \(\vdash \cdot \vdash \text{PURE} \) and there exists a post-condition \(\pi \) for which the pre-condition with respect to \(wp \) holds (i.e. \(\pi \in W[\text{PURE} t wp.] \)), then there exists a value \(v \) so that \(e \rightarrow^* v \).

7. **Summary of experiments**

In this section we discuss three main applications of \(\mathcal{P} \), supporting our claim that the language is well suited to play three roles.

(1) Describing the use of \(\mathcal{P} \) as general purpose programming language, we discuss how the \(\mathcal{P} \) implementation is bootstrapped;

(2) using \(\mathcal{P} \) as a proof assistant, we provide a brief overview of the formalization of \(\mu \mathcal{P} \);

(3) using \(\mathcal{P} \) as a program verification system, we discuss our ongoing verification of the TLS protocol.

We refer the reader to our online material for a large number of other examples, particularly emphasizing \(\mathcal{P} \)’s use as a proof assistant and program verification system. The experimental numbers we report below were collected on a Dell Precision 5810 workstation (Core i5 1620v3 CPU with 16 GB of RAM) running the official 0.9.1.1.5 of \(\mathcal{P} \) and Z3 4.4.0.

7.1 Bootstrapping \(\mathcal{P} \)

\(\mathcal{P} \) is implemented in about 20,500 lines of \(\mathcal{P} \) code. We use exceptions pervasively: IO for calling the SMT solver and reading source files; state for unification, memoization, and in selected places for fast lookup of symbols in the environment. Via bootstrapping (as described next), \(\mathcal{P} \) supports easy interoperability with both F# and OCaml. As such, our compiler relies on the standard libraries and parser generators provided by F# and OCaml.

Using a technique similar to the one in Coq (Letouzey 2008), \(\mathcal{P} \) implements code extraction to OCaml and F#. This extraction mechanism selectively emits casts (Obj.magic in OCaml; checked casts in F#), to ensure typeability in the weaker type systems of our target languages, while also emulating dependent types, higher-rank polymorphism, and ghost computations. To bootstrap \(\mathcal{P} \), we programmed it initially in a subset of \(\mathcal{P} \) that overlaps with F#; compiled it with F#; then extracted \(\mathcal{P} \) with itself to OCaml or F#; and finally compiled the result with the standard toolchain for the target language in question and distributed the resulting binaries.

Our experience attests to the ability to use \(\mathcal{P} \) as any other ML dialect and its “pay as you go” verification model—if one only writes ML types, then verification is essentially no more than ML type inference.

7.2 Formalizing \(\mu \mathcal{P} \) in \(\mathcal{P} \)

We have also mechanically checked in \(\mathcal{P} \) most of the progress and preservation proof for the \(\mathcal{P} \) effect of \(\mu \mathcal{P} \)—there are still a few technical lemmas that we admitt, as discussed below. This proof was developed over a period of four months by one of the authors and comprises \(\approx \text{6,500 lines} \)—checking the proof takes 3 minutes and 12 seconds. In the process of mechanically checking the proof of \(\mu \mathcal{P} \), as may be expected, we found and fixed several bugs in our formal definitions.

To build up to the formalization of \(\mu \mathcal{P} \), several of the authors completed formalizations of several other typed lambda calculi, starting from the simply typed lambda calculus and progressing up to \(\lambda \text{dec} \), including some variants with sub-typing. The style of mechanization is rather different than what is typical in tools like Coq. The proof is developed without tactics, and employs a mixture of constructive proofs (i.e. we directly write a proof term) and SMT solving. This is enabled by our heavy reliance on SMT solving and termination arguments based on lexical orderings—lacking these features, such a style of proof seems unthinkable in Coq and maybe even Agda. Still, this style of proving is not yet ideal. The admitted lemmas in \(\mu \mathcal{P} \) fall in two main classes and point to the need for higher level control over proofs, as discussed next.

First, several proofs require massaging derivations in \(\mathcal{P} \)’s deeply embedded entailment relation to prove logical tautologies. These proofs are tedious to do by hand, and since they are tautologies in \(\mathcal{P} \)’s deeply embedded logic, they are not easily dispatched by Z3 either. Instead of pushing them through by brute force, we...
hope to program tactics that can build proofs of these tautologies automatically.

Second, within proofs, F* relies primarily on Z3 for automatically performing reduction. When this works, it works very well. However, there are times when one needs to precisely control the amount of reduction that is done (e.g., reduce by unfolding definitions n times, following by k \(\beta \)-reductions etc.). Exercising this level of control requires intimate knowledge of F*’s SMT encodings, which ought to be transparent to the programmer. Once again, we hope to use a tactic language to provide better control over reduction.

Rather than devising a separate language, our current plan is to base our design on Mtac (Ziliani et al. 2013) to allow the tactic language of F* to be F* itself.

7.3 Verifying parts of TLS

As a long-term application of F*, we aim to produce a high-performance, verified implementation of the TLS protocol (including its latest 1.3 revision, currently under review by the IETF). Our starting point is miTLS (Bhargavan et al. 2013), a reference implementation of TLS (from SSL 3.0 to TLS 1.2) with detailed proofs of functional correctness, authentication, and confidentiality. miTLS is verified using a patchwork of SMT-based proofs in F7 (Bhargavan et al. 2010). Coq proofs where F7 is inadequate, code reviews, and manual arguments. Because of the variety of tools and techniques used, the overall proof is hard to follow and maintain. Lacking support for full dependent types, a weakest pre-condition calculus, and refinement type inference, F7 programs are both axiom-heavy and annotation-heavy, and require a careful coding discipline to prevent inconsistencies. Large parts of miTLS are also purely functional, since F7 does not support stateful verification, sometimes leading to unnatural, inefficient code.

In re-designing and verifying a few modules in F*, we already observe substantial improvements over miTLS. For example, we largely eliminate the use of axioms in the modules we verified. By relying on inference, we reduced the type annotations for message-processing code roughly by half. We also make use of multiple monads, including PURE, GHOST, DIV and STATE, with a mixture of flat and hyper-heaps. Randomness and IO are encoded using state monads, including TRY and for soundness requires a termination check based on the integer ordering, which is less expressive than ours. All these languages provide SMT-based automation, but do not have the ability to support interactive proofs or to carry out functional correctness proofs of effectful programs.

Clean-slate designs

The Zombie language (Casinghino et al. 2014) investigates the design of a dependently typed language that includes non-termination via general recursion. Zombie arose from a prior language. Trellys (Kimmell et al. 2013)—we focus primarily on Zombie here. Rather than using an effect system, Zombie adds a “consistency qualifier” to isolate potentially divergent programs from logical terms, with a notion of mobility that allows moving first-order types implicitly from one fragment to another. For functions, Zombie requires programmers to explicitly designate the fragment in which they belong. While our effect system with predicate transformers has a very different structure, there are also some similarities. For example, we also require function types to be explicit about the effects they may exhibit, in particular whether they include divergence or not. In addition to general recursion, Zombie provides a rule for fixpoints. Their rule (T-Ind) is similar in spirit to our (T-Fix). However, (T-Fix) is integrated with F*’s refinement types, WPs and other verification machinery, including the SMT solver, enabling concise termination proofs in practice. On the other hand, Zombie supports reasoning extrinsically about potentially divergent code, whereas in F*, proofs about divergent programs are carried out intrinsically, within its program logic. Zombie does not address other effects or provide proof automation.

Another recent clean-slate design is Idris (Brady 2013), which provides non-termination primitively and also an elegant style of algebraic effects. Brady points out that algebraic effects are preferable since they avoid some of the complications of composing effects posed by monads. In F*, we show some of these complications can be mitigated through the use of a type- and effect-system based on a lattice of monads, which automates effect composition in a modular manner. Additionally, effects in F* are supported primitively in the language, whereas in Idris, effectful programming is provided via an embedded DSL which elaborates effectful code to the underlying pure language. This has the benefit in Idris of making the effects fully extensible; the monad lattice in F* is also user extensible, but only within the bounds of what is provided primitively by the language. On the plus side, primitive effects in F* are more efficiently implemented than effects encoded in a pure language. Idris’ metatheory has yet to be studied significantly—as far as we are aware, the language does not attempt to ensure that non-termination does not compromise logical consistency. Idris also lacks SMT-based proof automation.

Another related language is ATS (Chen and Xi 2005), which, like F*, aims to combine effectful programming and theorem proving.
However, the design of ATS is substantially different from F∗. Notably, rather that dependent types, ATS partitions the language into separate fragments, the statics and dynamics; the former is used for specifications that describe the latter and is pure, by construction. In that regard, ATS is closer to old-F∗ than it is to the language of this paper. As discussed in §2, the indirection of a separate specification language and the inability to use pure functions directly in specifications was one of the main reasons we abandoned the design of old-F∗. Furthermore, ATS only has limited support for automated theorem proving, unlike F∗’s SMT integration.

Adding effects to a type-theory based proof assistant. Nanervski et al. (2008) develop Hoare type theory (HTT) as a way of extending Coq with effects. The strategy there is to provide an axiomatic extension of Coq with a single catch-all monad in which to encapsulate imperative code—the discussion about a single monad in §2 applies to HTT as well. Tools based on HTT have been developed, notably Ynot (Chlipala et al. 2009). This approach is attractive in that one retains all the tools for specification and interactive proving from Coq. On the downside, one also inherits Coq’s limitations, e.g., the syntactic termination check and lack of SMT-based automation.

Non-syntactic termination checks. Most dependent type theories rely crucially on normalization for consistency, many researchers have been investigating improving on Coq’s syntactic termination check via more semantic approaches. Agda offers two termination checkers. The first one is based on foutus [Abel 1998], and tries to discover a suitable lexicographic ordering on the arguments of mutually-defined functions automatically. Contrary to foutus, our termination checker does not aim to find an ordering automatically (although well-chosen defaults mean that the user often has to provide no annotation); nonetheless, our check is more flexible, since it is not restricted to a structural decreasing of arguments, but the decreasing of a measure applied to the arguments. The second one is based on sized types [Abel 2007; Barthe et al. 2003], where the size on types approximates the depth of terms. In contrast, in F∗, the measures are defined by the user and are first-class citizens of the language and can be reasoned about using all its reasoning machinery. Isabelle/HOL also supports semantic termination checking, however, the approach of Krauss et al. (2011) seems very different from ours, and only applies to a first-order fragment.

Semi-automated program verifiers. Software verification frameworks, such as Why3 (Filliatre and Paskevich 2013) and Dafny (Leino 2010), also use SMT solvers to verify the logical correctness of mostly first-order programs. Unlike F∗, they do not provide the expressiveness of dependent types and do not provide the flexibility of user-defined effects and memory models.

Memory abstractions for aliasing. Our hyper-heap model is closely related to local stores in Euclid (Lampson et al. 1977). Local stores are also a partitioned heap abstraction realized on a flat heap. However, local stores lack the hierarchical scheme of hyper-heaps, which we find convenient for hiding from clients the details of the partitioning scheme used within an object. Utting (1996) describes a variation on local heaps that supports a “transfer” operation, moving references dynamically from one region to another. This may be a useful variation on hyper-heaps as well, at the cost of losing the stable, state-independent invariants obtained by pinning a reference to a (dynamically chosen) region.

9. Looking ahead

In the past decade, several research groups have made remarkable progress in building formally verified software artifacts. One cohort of researchers mainly use interactive tools like Coq and Isabelle/HOL; another uses SMT-based tools like Dafny and F7. Despite their successes, neither approach is without difficulties, e.g., interactive provers could benefit from more automation and the ability to more freely use imperative features; users of automated tools would benefit from greater expressive power, and a way to provide interactive proofs when the SMT solver fails. F∗ seeks to be a bridge between these communities.

F∗ is a living language: it is a work in progress currently, and will continue to be for the foreseeable future. However, given the significant experience we already have had with it, we are optimistic that its design provides the flexibility and expressive power needed to satisfy the growing demand for producing formally verified software, at a cost that compares favorably with that offered by existing tools.

Acknowledgments. We are grateful to Abhishek Anand, Benjamin Beurdouche, Leonardo de Moura, Maxime Dénès, Deepak Garg, Niklas Grimm, Michael Hicks, Benjamin C. Pierce, Gordon Plotkin, and Jonathan Protenko for interesting discussions. We also thank the anonymous reviewers for their helpful feedback.

References

The Coq development team. The Coq proof assistant.

